A143205 Numbers having exactly two distinct prime factors p, q with q = p+6.
55, 91, 187, 247, 275, 391, 605, 637, 667, 1147, 1183, 1375, 1591, 1927, 2057, 2491, 3025, 3127, 3179, 3211, 4087, 4459, 4693, 4891, 5767, 6647, 6655, 6875, 7387, 8281, 8993, 9991, 10807, 11227, 12091, 15125, 15341, 15379, 17947, 19343, 22627, 23707
Offset: 1
Keywords
Examples
a(1) = 55 = 5 * 11 = A023201(1) * A046117(1). a(2) = 91 = 7 * 13 = A023201(2) * A046117(2). a(3) = 187 = 11 * 17 = A023201(3) * A046117(3). a(4) = 247 = 13 * 19 = A023201(4) * A046117(4). a(5) = 275 = 5^2 * 11 = A023201(1)^2 * A046117(1). a(6) = 391 = 17 * 23 = A023201(5) * A046117(5). a(7) = 605 = 5 * 11^2 = A023201(1) * A046117(1)^2. a(8) = 637 = 7^2 * 13 = A023201(2)^2 * A046117(2). a(9) = 667 = 23 * 29 = A023201(6) * A046117(6). a(10) = 1147 = 31 * 37 = A023201(7) * A046117(7).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..250
- Eric Weisstein's World of Mathematics, Sexy Primes. [The definition in this webpage is unsatisfactory, because it defines a "sexy prime" as a pair of primes.- _N. J. A. Sloane_, Mar 07 2021]
- Index entries for primes, gaps between.
Crossrefs
Programs
-
Haskell
a143205 n = a143205_list !! (n-1) a143205_list = filter f [1,3..] where f x = length pfs == 2 && last pfs - head pfs == 6 where pfs = a027748_row x -- Reinhard Zumkeller, Sep 13 2011
-
Mathematica
okQ[n_]:=Module[{fi=Transpose[FactorInteger[n]][[1]]},Length[fi]==2 && Last[fi]-First[fi]==6]; Select[Range[25000],okQ] (* Harvey P. Dale, Apr 18 2011 *)
Comments