cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A143201 Product of distances between prime factors in factorization of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 6, 3, 1, 1, 2, 1, 4, 5, 10, 1, 2, 1, 12, 1, 6, 1, 6, 1, 1, 9, 16, 3, 2, 1, 18, 11, 4, 1, 10, 1, 10, 3, 22, 1, 2, 1, 4, 15, 12, 1, 2, 7, 6, 17, 28, 1, 6, 1, 30, 5, 1, 9, 18, 1, 16, 21, 12, 1, 2, 1, 36, 3, 18, 5, 22, 1, 4, 1, 40, 1, 10, 13, 42, 27, 10, 1, 6, 7, 22
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 12 2008

Keywords

Comments

a(n) is the product of the sum of 1 and first differences of prime factors of n with multiplicity, with a(n) = 1 for n = 1 or prime n. - Michael De Vlieger, Nov 12 2023.
a(A007947(n)) = a(n);
A006093 and A001747 give record values and where they occur:
A006093(n)=a(A001747(n+1)) for n>1.
a(n) = 1 iff n is a prime power: a(A000961(n))=1;
a(n) = 2 iff n has exactly 2 and 3 as prime factors:
a(A033845(n))=2;
a(n) = 3 iff n is in A143202;
a(n) = 4 iff n has exactly 2 and 5 as prime factors:
a(A033846(n))=4;
a(n) = 5 iff n is in A143203;
a(n) = 6 iff n is in A143204;
a(n) = 7 iff n is in A143205;
a(n) <> A006512(k)+1 for k>1.
a(A033849(n))=3; a(A033851(n))=3; a(A033850(n))=5; a(A033847(n))=6; a(A033848(n))=10. [Reinhard Zumkeller, Sep 19 2011]

Examples

			a(86) = a(43*2) = 43-2+1 = 42;
a(138) = a(23*3*2) = (23-3+1)*(3-2+1) = 42;
a(172) = a(43*2*2) = (43-2+1)*(2-2+1) = 42;
a(182) = a(13*7*2) = (13-7+1)*(7-2+1) = 42;
a(276) = a(23*3*2*2) = (23-3+1)*(3-2+1)*(2-2+1) = 42;
a(330) = a(11*5*3*2) = (11-5+1)*(5-3+1)*(3-2+1) = 42.
		

Crossrefs

Programs

  • Haskell
    a143201 1 = 1
    a143201 n = product $ map (+ 1) $ zipWith (-) (tail pfs) pfs
       where pfs = a027748_row n
    -- Reinhard Zumkeller, Sep 13 2011
  • Mathematica
    Table[Times@@(Differences[Flatten[Table[First[#],{Last[#]}]&/@ FactorInteger[ n]]]+1),{n,100}] (* Harvey P. Dale, Dec 07 2011 *)

Formula

a(n) = f(n,1,1) where f(n,q,y) = if n=1 then y else if q=1 then f(n/p,p,1)) else f(n/p,p,y*(p-q+1)) with p = A020639(n) = smallest prime factor of n.

A111192 Product of the n-th sexy prime pair.

Original entry on oeis.org

55, 91, 187, 247, 391, 667, 1147, 1591, 1927, 2491, 3127, 4087, 4891, 5767, 7387, 9991, 10807, 11227, 12091, 17947, 23707, 25591, 28891, 30967, 37627, 38407, 51067, 52891, 55687, 64507, 67591, 70747, 75067, 78391, 96091, 98587, 111547, 122491, 126727, 136891
Offset: 1

Views

Author

Shawn M Moore (sartak(AT)gmail.com), Oct 23 2005

Keywords

Comments

Semiprime of the form 4*m^2-9 = (2*m-3)*(2*m+3). - Vincenzo Librandi, Jan 26 2016

Examples

			a(2)=91 because the second sexy prime pair is (7, 13) and 7*13=91.
		

Crossrefs

Cf. A037074, A143206, A195118; intersection of A143205 and A001358.

Programs

  • Haskell
    a111192 n = a111192_list !! (n-1)
    a111192_list = f a000040_list where
       f (p:ps@(q:r:_)) | q - p == 6 = (p*q) : f ps
                        | r - p == 6 = (p*r) : f ps
                        | otherwise  = f ps
    -- Reinhard Zumkeller, Sep 13 2011
    
  • Magma
    IsSemiprime:=func; [s: n in [1..300] | IsSemiprime(s) where s is 4*n^2-9]; // Vincenzo Librandi, Jan 26 2016
  • Mathematica
    #(#+6)&/@Select[Prime[Range[100]], PrimeQ[#+6]&] (* Harvey P. Dale, Dec 17 2010 *)
    (* For checking large numbers, the following code is better. For instance, we could use the fQ function to determine that 229031718473564142083 is not in this sequence. *) fQ[n_] := Block[{fi = FactorInteger[n]}, Last@# & /@ fi == {1, 1} && Differences[ First@# & /@ fi] == {6}]; Select[ Range[125000], fQ] (* Robert G. Wilson v, Feb 08 2012 *)
    Select[Table[4 n^2 - 9, {n, 300}], PrimeOmega[#] == 2 &] (* Vincenzo Librandi, Jan 26 2016 *)

Formula

a(n) = A023201(n) * A046117(n). - Reinhard Zumkeller, Sep 13 2011

A195118 Numbers with largest and smallest prime factors differing by 6.

Original entry on oeis.org

55, 91, 187, 247, 275, 385, 391, 605, 637, 667, 1001, 1147, 1183, 1375, 1591, 1925, 1927, 2057, 2431, 2491, 2695, 3025, 3127, 3179, 3211, 4087, 4199, 4235, 4459, 4693, 4891, 5767, 6647, 6655, 6875, 7007, 7387, 7429, 8281, 8993, 9625, 9991, 10807, 11011
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 13 2011

Keywords

Examples

			a(10) = 667 = 23 * 29;
a(11) = 1001 = 7 * 11 * 13;
a(12) = 1147 = 31 * 37;
a(13) = 1183 = 7 * 13^2.
		

Crossrefs

Cf. A195106, A111192; A143205 is a subsequence.

Programs

  • Haskell
    a195118 n = a195118_list !! (n-1)
    a195118_list = filter f [3,5..] where
       f x = last pfs - head pfs == 6 where pfs = a027748_row x
  • Mathematica
    spf6Q[n_]:=With[{fi=FactorInteger[n]},fi[[-1,1]]-fi[[1,1]]==6]; Select[Range[12000],spf6Q] (* Harvey P. Dale, May 14 2024 *)
Showing 1-3 of 3 results.