cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A143206 Product of the n-th cousin prime pair.

Original entry on oeis.org

21, 77, 221, 437, 1517, 2021, 4757, 6557, 9797, 11021, 12317, 16637, 27221, 38021, 50621, 53357, 77837, 95477, 99221, 123197, 145157, 159197, 194477, 210677, 216221, 239117, 250997, 378221, 416021, 455621, 549077, 576077, 594437, 680621
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 12 2008

Keywords

Comments

Intersection of A143203 and A001358.
Sum_{n>=2} 1/a(n) > 0.02187310784. - R. J. Mathar, Jan 23 2013

Examples

			a(1) = 3*7 = 3*(3+4) = 21;
a(2) = 7*11 = 7*(7+4) = 77;
a(3) = 13*17 = 13*(13+4) = 221;
a(4) = 19*23 = 19*(19+4) = 437.
		

Crossrefs

Programs

  • Haskell
    a143206 n = a143206_list !! (n-1)
    a143206_list = (3*7) : f a000040_list where
       f (p:ps@(p':_)) | p'-p == 4 = (p*p') : f ps
                       | otherwise = f ps
    -- Reinhard Zumkeller, Sep 13 2011
    
  • Magma
    [(p*(p+4)): p in PrimesUpTo(1000)| IsPrime(p+4)]; // Vincenzo Librandi, Jan 04 2018
    
  • Mathematica
    fQ[n_] := Block[{fi = FactorInteger@ n}, Last@# & /@ fi == {1, 1} && Differences[ First@# & /@ fi] == {4}]; Select[ Range@ 700000, fQ] (* Robert G. Wilson v, Feb 08 2012 *)
  • PARI
    lista(nn) = forprime(p=2, nn, if (isprime(q=p+4), print1(p*q, ", "))); \\ Michel Marcus, Jan 04 2018

Formula

a(n) = A023200(n)*A046132(n).

A104229 Primes equal to the product of two successive sexy primes plus 6.

Original entry on oeis.org

61, 97, 193, 397, 673, 1153, 1597, 1933, 4093, 7393, 12097, 37633, 64513, 70753, 96097, 122497, 126733, 136897, 190093, 211597, 256033, 313597, 329473, 348097, 430333, 541693, 781453, 891133, 988033, 1267873, 1416097, 1674433, 2102497
Offset: 1

Views

Author

Giovanni Teofilatto, Apr 02 2005

Keywords

Comments

Primes of the form 6 + A111192(i). - R. J. Mathar, Nov 26 2008
All numbers in this sequence are of the form 12n + 1. Also, as one would expect from a random distribution of sexy prime pairs, with the exception of 61, in decimal two thirds of these numbers end in 3, and the other third end in 7. - Daniel Mondot, Apr 29 2024

Crossrefs

Extensions

Extended by R. J. Mathar, Nov 26 2008

A143205 Numbers having exactly two distinct prime factors p, q with q = p+6.

Original entry on oeis.org

55, 91, 187, 247, 275, 391, 605, 637, 667, 1147, 1183, 1375, 1591, 1927, 2057, 2491, 3025, 3127, 3179, 3211, 4087, 4459, 4693, 4891, 5767, 6647, 6655, 6875, 7387, 8281, 8993, 9991, 10807, 11227, 12091, 15125, 15341, 15379, 17947, 19343, 22627, 23707
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 30 2008

Keywords

Comments

Subsequence of A007774.
A111192 is a subsequence.
Subsequence of A195118. - Reinhard Zumkeller, Sep 13 2011

Examples

			a(1) = 55 = 5 * 11 = A023201(1) * A046117(1).
a(2) = 91 = 7 * 13 = A023201(2) * A046117(2).
a(3) = 187 = 11 * 17 = A023201(3) * A046117(3).
a(4) = 247 = 13 * 19 = A023201(4) * A046117(4).
a(5) = 275 = 5^2 * 11 = A023201(1)^2 * A046117(1).
a(6) = 391 = 17 * 23 = A023201(5) * A046117(5).
a(7) = 605 = 5 * 11^2 = A023201(1) * A046117(1)^2.
a(8) = 637 = 7^2 * 13 = A023201(2)^2 * A046117(2).
a(9) = 667 = 23 * 29 = A023201(6) * A046117(6).
a(10) = 1147 = 31 * 37 = A023201(7) * A046117(7).
		

Crossrefs

Programs

  • Haskell
    a143205 n = a143205_list !! (n-1)
    a143205_list = filter f [1,3..] where
       f x = length pfs == 2 && last pfs - head pfs == 6 where
           pfs = a027748_row x
    -- Reinhard Zumkeller, Sep 13 2011
  • Mathematica
    okQ[n_]:=Module[{fi=Transpose[FactorInteger[n]][[1]]},Length[fi]==2 && Last[fi]-First[fi]==6]; Select[Range[25000],okQ]  (* Harvey P. Dale, Apr 18 2011 *)

Formula

A143201(a(n)) = 7.
A020639(a(n)) in A023201 and A006530(a(n)) in A046117.
A001221(a(n)) = 2.
Sum_{n>=1} 1/a(n) = Sum_{n>=1} 1/((A023201(n)+2)^2-9) = 0.058842810164... . - Amiram Eldar, Oct 26 2024

A195118 Numbers with largest and smallest prime factors differing by 6.

Original entry on oeis.org

55, 91, 187, 247, 275, 385, 391, 605, 637, 667, 1001, 1147, 1183, 1375, 1591, 1925, 1927, 2057, 2431, 2491, 2695, 3025, 3127, 3179, 3211, 4087, 4199, 4235, 4459, 4693, 4891, 5767, 6647, 6655, 6875, 7007, 7387, 7429, 8281, 8993, 9625, 9991, 10807, 11011
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 13 2011

Keywords

Examples

			a(10) = 667 = 23 * 29;
a(11) = 1001 = 7 * 11 * 13;
a(12) = 1147 = 31 * 37;
a(13) = 1183 = 7 * 13^2.
		

Crossrefs

Cf. A195106, A111192; A143205 is a subsequence.

Programs

  • Haskell
    a195118 n = a195118_list !! (n-1)
    a195118_list = filter f [3,5..] where
       f x = last pfs - head pfs == 6 where pfs = a027748_row x
  • Mathematica
    spf6Q[n_]:=With[{fi=FactorInteger[n]},fi[[-1,1]]-fi[[1,1]]==6]; Select[Range[12000],spf6Q] (* Harvey P. Dale, May 14 2024 *)

A210477 Product of adjacent primes with a gap of 6.

Original entry on oeis.org

667, 1147, 2491, 3127, 4087, 5767, 7387, 17947, 23707, 25591, 28891, 30967, 55687, 64507, 67591, 70747, 75067, 111547, 126727, 136891, 141367, 148987, 190087, 198907, 256027, 295927, 313591, 320347, 329467, 348091, 355207, 364807, 372091, 422491, 430327, 462391, 532891
Offset: 1

Views

Author

R. J. Mathar, Jan 23 2013

Keywords

Comments

Subsequence of A111192.
Sum_{n>=1} 1/a(n) > 0.00405067912.

Programs

Formula

a(n) = A031924(n)*(A031924(n)+6).

A254690 Number of decompositions of 2n into a sum of two primes p1 < p2 such that p2-p1 is between a pair of sexy primes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 1, 3, 3, 2, 3, 5, 4, 2, 5, 2, 3, 5, 2, 4, 6, 2, 5, 6, 3, 4, 6, 4, 3, 7, 2, 3, 8, 3, 4, 6, 2, 5, 7, 3, 3, 7, 5, 5, 8, 4, 3, 9, 2, 4, 8, 2, 5, 7, 2, 2, 4, 6, 5, 7, 4, 2, 10, 2, 4, 7, 1, 6, 7, 1, 4, 10, 7, 3, 8
Offset: 1

Views

Author

Lei Zhou, Feb 05 2015

Keywords

Comments

"A pair of sexy primes" is defined as two primes p_a < p_b such that p_b = p_a + 6, with p_a from A023201. See the Weisstein link.
The restriction is therefore p_a < p2 - p1 < p_a + 6 for p_a from A023201.
Conjecture: when n>=7, a(n)>0.
The products of sexy prime pairs are listed in A111192.

Examples

			n=7, 2n=14=3+11. 11-3=8, 5<8<11 where {5, 11} is a pair of sexy primes. So a(7)=1.
n=8, 2n=16=3+13=5+11. 13-3=10, 5<10<11; 11-5=6, 5<6<11, where {5, 11} is a pair of sexy primes: two cases found, so a(8)=2.
n=17, 2n=34=3+31=5+29=11+23. 31-3=28, 23<28<29; 29-5=24, 23<24<29; 23-11=12, 7<12<13; where {23,29} and {7,13} are sexy prime pairs: three cases found, so a(17)=3.
		

Crossrefs

Programs

  • Mathematica
    Table[e = 2 n; ct = 0; p1 = 1; While[p1 = NextPrime[p1]; p1 < n, p2 = e - p1; If[PrimeQ[p2], c = p2 - p1; If[c >= 6, found = 0; Do[If[PrimeQ[c - i] && PrimeQ[c + 6 - i], found = 1], {i, 1, 5, 2}]; If[found == 1, ct++]]]]; ct, {n, 1, 100}]

Extensions

Edited by Wolfdieter Lang, Feb 20 2015

A324210 Squarefree numbers k such that the sum of the distinct prime factors of k is twice the difference between the largest and the smallest prime factors of k.

Original entry on oeis.org

110, 182, 374, 494, 782, 1334, 2294, 3182, 3854, 4982, 6254, 7905, 7917, 8174, 9782, 11534, 12765, 14774, 15810, 15834, 18705, 19982, 20757, 21614, 22330, 22454, 24182, 25530, 27265, 28210, 30381, 30597, 32637, 35894, 37410, 40205, 41181, 41514, 43005, 47414, 49210
Offset: 1

Views

Author

David A. Corneth, Apr 09 2019

Keywords

Comments

This sequence is a primitive subsequence of A200070. If p|a(n) for some prime p then p*a(n) is in A200070.
From Robert Israel, Apr 09 2019: (Start)
All terms have at least three prime factors.
The number of prime factors is odd if and only if the term is even.
The terms with three prime factors are 2*A111192. (End)

Examples

			110 = 2 * 5 * 11 is squarefree. The minimal and maximal prime divisors of 110 are 2 and 11 respectively. Twice their difference is 2 * (11-2) = 18 which is also the sum of the distinct prime divisors of 110; 2 + 5 + 11 = 18.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local P;
    if not numtheory:-issqrfree(n) then return false fi;
    P:= numtheory:-factorset(n);
      convert(P, `+`) = 2*(max(P)-min(P))
    end proc:
    select(filter, [$1..50000]);# Robert Israel, Apr 09 2019
  • Mathematica
    Select[Select[Range[2, 5*10^4], SquareFreeQ], Total@ # == 2 (Last@ # - First@ #) &@ FactorInteger[#][[All, 1]] &] (* Michael De Vlieger, Apr 11 2019 *)
  • PARI
    is(n) = if(!issquarefree(n), return(0)); my(f=factor(n)[, 1]~); sum(i=1, #f, f[i])==2*(f[#f]-f[1])
    forcomposite(c=1, 50000, if(is(c), print1(c, ", "))) \\ Felix Fröhlich, Apr 11 2019

A366867 Products of sexy prime triples: sphenic numbers with prime factorization (p - 6)*p*(p + 6).

Original entry on oeis.org

935, 1729, 4301, 11339, 49321, 102131, 146969, 298351, 386389, 1089019, 1221191, 3864241, 5171489, 12640949, 16965341, 18181979, 21243961, 43974269, 51881689, 178433279, 208506509, 223626691, 230324329, 270816731, 278421569, 393806449, 849244031, 932539661
Offset: 1

Views

Author

Matthew Goers, Oct 25 2023

Keywords

Examples

			5, 11, and 17 are primes p, p+6, p+12, called a sexy prime triple. 5*11*17 = 935, so 935 is a term.
7, 13, and 19 are the second set of sexy prime triples. 7*13*19=1729, so 1729 is the second term.
		

Crossrefs

Cf. A006489, A111192. Subsequence of A007304.

Programs

  • Mathematica
    (#*(#^2 - 36)) & /@ Select[Prime[Range[180]], PrimeQ[# - 6] && PrimeQ[# + 6] &] (* Amiram Eldar, Oct 27 2023 *)
  • PARI
    apply(x->x*(x-6)*(x+6), select(x->(isprime(x-6) && isprime(x) && isprime(x+6)), [1..1000])) \\ Michel Marcus, Oct 27 2023

Formula

a(n) = (A006489(n) - 6)*A006489(n)*(A006489(n) + 6).
Showing 1-8 of 8 results.