cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A111192 Product of the n-th sexy prime pair.

Original entry on oeis.org

55, 91, 187, 247, 391, 667, 1147, 1591, 1927, 2491, 3127, 4087, 4891, 5767, 7387, 9991, 10807, 11227, 12091, 17947, 23707, 25591, 28891, 30967, 37627, 38407, 51067, 52891, 55687, 64507, 67591, 70747, 75067, 78391, 96091, 98587, 111547, 122491, 126727, 136891
Offset: 1

Views

Author

Shawn M Moore (sartak(AT)gmail.com), Oct 23 2005

Keywords

Comments

Semiprime of the form 4*m^2-9 = (2*m-3)*(2*m+3). - Vincenzo Librandi, Jan 26 2016

Examples

			a(2)=91 because the second sexy prime pair is (7, 13) and 7*13=91.
		

Crossrefs

Cf. A037074, A143206, A195118; intersection of A143205 and A001358.

Programs

  • Haskell
    a111192 n = a111192_list !! (n-1)
    a111192_list = f a000040_list where
       f (p:ps@(q:r:_)) | q - p == 6 = (p*q) : f ps
                        | r - p == 6 = (p*r) : f ps
                        | otherwise  = f ps
    -- Reinhard Zumkeller, Sep 13 2011
    
  • Magma
    IsSemiprime:=func; [s: n in [1..300] | IsSemiprime(s) where s is 4*n^2-9]; // Vincenzo Librandi, Jan 26 2016
  • Mathematica
    #(#+6)&/@Select[Prime[Range[100]], PrimeQ[#+6]&] (* Harvey P. Dale, Dec 17 2010 *)
    (* For checking large numbers, the following code is better. For instance, we could use the fQ function to determine that 229031718473564142083 is not in this sequence. *) fQ[n_] := Block[{fi = FactorInteger[n]}, Last@# & /@ fi == {1, 1} && Differences[ First@# & /@ fi] == {6}]; Select[ Range[125000], fQ] (* Robert G. Wilson v, Feb 08 2012 *)
    Select[Table[4 n^2 - 9, {n, 300}], PrimeOmega[#] == 2 &] (* Vincenzo Librandi, Jan 26 2016 *)

Formula

a(n) = A023201(n) * A046117(n). - Reinhard Zumkeller, Sep 13 2011

A104227 Primes one less than the sum over a sexy prime pair.

Original entry on oeis.org

19, 31, 67, 79, 127, 139, 151, 199, 211, 307, 547, 619, 739, 751, 919, 1087, 1231, 1459, 1471, 1759, 1987, 2131, 2179, 2239, 2251, 2467, 2647, 2851, 2971, 3319, 3331, 3391, 3499, 3511, 3559, 3571, 3727, 3739, 4027, 4567, 4759, 5107, 5347, 5419, 5431, 6367, 6607, 6619, 7027, 7219, 7459
Offset: 1

Views

Author

Giovanni Teofilatto, Apr 02 2005

Keywords

Comments

Primes of the form A023201(i)+A046117(i)-1 or of the form 2*A087695(j)-1.

Examples

			19=7+13-1 is a prime and one less than the sum 7+13 over the second sexy prime pair.
		

Crossrefs

Programs

  • Mathematica
    Select[2#+5&/@Select[Prime[Range[600]],PrimeQ[#+6]&],PrimeQ] (* Harvey P. Dale, Jan 04 2020 *)

Extensions

Corrected definition. Extended beyond a(7). - R. J. Mathar, Nov 26 2008

A104228 Primes one larger than the sum over a sexy prime pair.

Original entry on oeis.org

17, 29, 41, 53, 89, 101, 113, 173, 269, 353, 389, 461, 509, 521, 701, 773, 929, 1013, 1181, 1193, 1289, 1301, 1361, 1721, 1889, 1901, 1949, 2213, 2381, 2441, 2609, 2729, 2741, 2861, 2969, 3209, 3221, 3821, 4001, 4133, 4421, 4481, 4673, 4793, 4889, 5381, 5393, 5801, 5813, 6173, 6653, 7349, 7529
Offset: 1

Views

Author

Giovanni Teofilatto, Apr 02 2005

Keywords

Comments

Primes of the form A023201(i)+A046117(i)+1 - R. J. Mathar, Nov 26 2008

Examples

			17=5+11+1 is prime and one larger than the sum 5+11 over the first sexy prime pair. - _R. J. Mathar_, Nov 26 2008
		

Crossrefs

Extensions

Inserted 89 and extended beyond a(8). - R. J. Mathar, Nov 26 2008
Showing 1-3 of 3 results.