A143212 a(n) = Fibonacci(n) * (Fibonacci(n+2) - 1).
1, 2, 8, 21, 60, 160, 429, 1134, 2992, 7865, 20648, 54144, 141897, 371722, 973560, 2549421, 6675460, 17478176, 45761045, 119808150, 313668576, 821205937, 2149962768, 5628704256, 14736185425, 38579909330, 101003635304
Offset: 1
Keywords
Examples
a(5) = 60 = F(5) * (F(7)-1) = 5*12. a(5) = 60 = sum of row 5 terms of triangle A143211: (5 + 5 + 10 + 15 + 25).
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,1,-5,-1,1).
Programs
-
Magma
[Fibonacci(n)*(Fibonacci(n+2)-1): n in [1..40]]; // G. C. Greubel, Jul 21 2024
-
Mathematica
LinearRecurrence[{3,1,-5,-1,1}, {1,2,8,21,60}, 40] (* Vladimir Joseph Stephan Orlovsky, Oct 13 2009 *) Table[Fibonacci[n](Fibonacci[n+2]-1),{n,30}] (* Harvey P. Dale, Dec 14 2012 *)
-
SageMath
[fibonacci(n)*(fibonacci(n+2)-1) for n in range(1,41)] # G. C. Greubel, Jul 21 2024
Formula
From R. J. Mathar, Sep 06 2008: (Start)
G.f.: (1-x+x^2)/((1+x)*(1-3*x+x^2)*(1-x-x^2)).
a(n) = Fibonacci(n)*Sum_{k=0..n} Fibonacci(k). - Paul Barry, Jan 05 2009
Comments