cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143212 a(n) = Fibonacci(n) * (Fibonacci(n+2) - 1).

Original entry on oeis.org

1, 2, 8, 21, 60, 160, 429, 1134, 2992, 7865, 20648, 54144, 141897, 371722, 973560, 2549421, 6675460, 17478176, 45761045, 119808150, 313668576, 821205937, 2149962768, 5628704256, 14736185425, 38579909330, 101003635304
Offset: 1

Views

Author

Gary W. Adamson, Jul 30 2008

Keywords

Comments

Lim_{n -> oo} a(n)/a(n-1) tends to phi^2.
a(n) = Product of sum of first n Fibonacci numbers and Fibonacci number(n). - Vladimir Joseph Stephan Orlovsky, Oct 13 2009

Examples

			a(5) = 60 = F(5) * (F(7)-1) = 5*12.
a(5) = 60 = sum of row 5 terms of triangle A143211: (5 + 5 + 10 + 15 + 25).
		

Crossrefs

Programs

  • Magma
    [Fibonacci(n)*(Fibonacci(n+2)-1): n in [1..40]]; // G. C. Greubel, Jul 21 2024
    
  • Mathematica
    LinearRecurrence[{3,1,-5,-1,1}, {1,2,8,21,60}, 40] (* Vladimir Joseph Stephan Orlovsky, Oct 13 2009 *)
    Table[Fibonacci[n](Fibonacci[n+2]-1),{n,30}] (* Harvey P. Dale, Dec 14 2012 *)
  • SageMath
    [fibonacci(n)*(fibonacci(n+2)-1) for n in range(1,41)] # G. C. Greubel, Jul 21 2024

Formula

a(n) = A000045(n) * A000071(n+2).
a(n) = Sum_{k=1..n} A143211(n, k) (row sums of A143211).
From R. J. Mathar, Sep 06 2008: (Start)
G.f.: (1-x+x^2)/((1+x)*(1-3*x+x^2)*(1-x-x^2)).
a(n) = (-5*A000045(n+1) + 3*(-1)^n + 7*A001906(n+1) -3*A001906(n))/5. (End)
a(n) = Fibonacci(n)*Sum_{k=0..n} Fibonacci(k). - Paul Barry, Jan 05 2009