A143213
Triangle T(n,m) read by rows: Gray code of A060187(n, k) (decimal representation), 1 <= k <= n, n >= 1.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 28, 28, 1, 1, 106, 149, 106, 1, 1, 155, 987, 987, 155, 1, 1, 955, 440, 514, 440, 955, 1, 1, 194, 137, 974, 974, 137, 194, 1, 1, 340, 754, 60, 293, 60, 754, 340, 1, 1, 181, 238, 166, 377, 377, 166, 238, 181, 1, 1, 977, 283, 540, 411, 142, 411, 540, 283, 977, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, 5, 1;
1, 28, 28, 1;
1, 106, 149, 106, 1;
1, 155, 987, 987, 155, 1;
1, 955, 440, 514, 440, 955, 1;
1, 194, 137, 974, 974, 137, 194, 1;
1, 340, 754, 60, 293, 60, 754, 340, 1;
1, 181, 238, 166, 377, 377, 166, 238, 181, 1;
1, 977, 283, 540, 411, 142, 411, 540, 283, 977, 1;
-
GrayCode[n_, k_]:= FromDigits[BitXor@@@Partition[Prepend[IntegerDigits[n,2,k], 0], 2, 1], 2];
A060187[n_, k_]:= Sum[(-1)^(k-j)*Binomial[n,k-j]*(2*j-1)^(n-1), {j,k}];
A143213[n_, k_]:= GrayCode[A060187[n, k], 10];
Table[A143213[n,k], {n,12}, {k,n}]//Flatten
A178058
Number of 1's in the Gray code for binomial(n,m).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 4, 4, 3, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 5, 3, 3, 5, 1, 1, 1, 2, 2, 2, 4, 2, 2, 2, 1, 1, 3, 4, 6, 2, 2, 6, 4, 3, 1, 1, 4, 5, 2, 6, 2, 6, 2, 5, 4, 1
Offset: 0
1;
1, 1;
1, 2, 1;
1, 1, 1, 1;
1, 2, 2, 2, 1;
1, 3, 4, 4, 3, 1;
1, 2, 1, 4, 1, 2, 1;
1, 1, 5, 3, 3, 5, 1, 1;
1, 2, 2, 2, 4, 2, 2, 2, 1;
1, 3, 4, 6, 2, 2, 6, 4, 3, 1;
1, 4, 5, 2, 6, 2, 6, 2, 5, 4, 1;
- Eric W. Weisstein’s World of Mathematics, Gray code
-
A178058 := proc(n,m)
A005811(binomial(n,m)) ;
end proc: # R. J. Mathar, Mar 10 2015
-
GrayCodeList[k_] := Module[{b = IntegerDigits[k, 2], i},
Do[
If[b[[i - 1]] == 1, b[[i]] = 1 - b[[i]]],
{i, Length[b], 2, -1}
];
b
]
Table[Table[Apply[Plus, GrayCodeList[Binomial[n, m]]], {m, 0, n}], {n, 0, 10}];
Flatten[%]
A143261
Triangle read by rows: binary reversed Gray code of binomial(n,m).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3, 5, 3, 1, 1, 7, 15, 15, 7, 1, 1, 5, 1, 15, 1, 5, 1, 1, 1, 31, 19, 19, 31, 1, 1, 1, 3, 9, 9, 83, 9, 9, 3, 1, 1, 11, 27, 63, 65, 65, 63, 27, 11, 1, 1, 15, 55, 17, 221, 65, 221, 17, 55, 15, 1, 1, 7, 13, 239, 495, 297, 297, 495, 239, 13, 7, 1
Offset: 0
1;
1, 1;
1, 3, 1;
1, 1, 1, 1;
1, 3, 5, 3, 1;
1, 7, 15, 15, 7, 1;
1, 5, 1, 15, 1, 5, 1;
1, 1, 31, 19, 19, 31, 1, 1;
1, 3, 9, 9, 83, 9, 9, 3, 1;
1, 11, 27, 63, 65, 65, 63, 27, 11, 1;
1, 15, 55, 17, 221, 65, 221, 17, 55, 15, 1;
1, 7, 13, 239, 495, 297, 297, 495, 239, 13, 7, 1;
-
A143261 := proc(n,m)
binomial(n,m) ;
A003188(%) ;
A030101(%) ;
end proc: # R. J. Mathar, Mar 10 2015
-
GrayCodeList[k_] := Module[{b = IntegerDigits[k, 2], i}, Do[ If[b[[i - 1]] == 1, b[[i]] = 1 - b[[i]]], {i, Length[b], 2, -1} ]; b ]; b = Table[Table[Sum[GrayCodeList[Binomial[n, k]][[m + 1]]*2^m, {m, 0, Length[GrayCodeList[Binomial[n, k]]] - 1}], {k, 0, n}], {n, 0, Length[a]}]; Flatten[b]
A143332
Related to Gray code representation of Fibonacci(n) in base 10.
Original entry on oeis.org
0, 1, 1, 3, 2, 7, 12, 11, 31, 51, 44, 117, 216, 157, 453, 851, 566, 803, 788, 127, 859, 931, 440, 521, 432, 409, 809, 739, 458, 239, 828, 947, 391, 531, 148, 173, 360, 837, 61, 1011, 942, 475, 36, 375, 307, 579, 496, 145, 864, 689, 465
Offset: 0
-
GrayCodeList[k_] := Module[{b = IntegerDigits[k, 2], i}, Do[ If[b[[i - 1]] == 1, b[[i]] = 1 - b[[i]]], {i, Length[b], 2, -1} ]; b ]; FromGrayCodeList[d_] := Module[{b = d, i, j}, Do[ If[Mod[Sum[b[[j]], {j, i - 1}], 2] == 1, b[[i]] = 1 - b[[i]]], {i, n = Length[d], 2, -1} ]; FromDigits[b, 2] ]; GrayCode[i_, n_] :=
Showing 1-4 of 4 results.
Comments