cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A222065 a(n) = A143246(2n).

Original entry on oeis.org

2, 12, 2144, 9277152, 934520913216, 2152453777211211412, 112252999240982874562527216, 131765033045251672652319572331061144, 3467852755777932367855581588111341658695967892
Offset: 1

Views

Author

N. J. A. Sloane, Feb 08 2013

Keywords

Crossrefs

Cf. A143246.

A096969 Number of ways to number the cells of an n X n square grid with 1,2,3,...,n^2 so that successive integers are in adjacent cells (horizontally or vertically).

Original entry on oeis.org

1, 8, 40, 552, 8648, 458696, 27070560, 6046626568, 1490832682992, 1460089659025264, 1573342970540617696, 6905329711608694708440, 33304011435341069362631160, 663618176813467308855850585056, 14527222735920532980525200234503048
Offset: 1

Views

Author

John W. Layman, Jul 16 2004, at the suggestion of Leroy Quet, Jul 05 2004

Keywords

Comments

Number of directed Hamiltonian paths in (n X n)-grid graph. - Max Alekseyev, May 03 2009

Examples

			One of the 8648 numberings of a 5 X 5 grid is
.
  3---2---1  20--21
  |           |   |
  4  17--18--19  22
  |   |           |
  5  16--15--14  23
  |           |   |
  6   9--10  13  24
  |   |   |   |   |
  7---8  11--12  25
		

Crossrefs

Formula

Conjecture: Limit_{n->oo} log_(n+1)!(a(n+1)) - log_n!(a(n)) = c, where 0.09 < c < 0.11. - Nicolas Bělohoubek, Jun 12 2022

Extensions

a(7) from Giovanni Resta, May 12 2006
a(8)-a(15) added by Andrew Howroyd, Dec 20 2015

A238115 Number of states arising in matrix method for enumerating Hamiltonian cycles on a 2n X 2n grid.

Original entry on oeis.org

1, 6, 32, 182, 1117, 7280, 49625, 349998, 2535077, 18758264, 141254654, 1079364104, 8350678169, 65298467486, 515349097712, 4100346740510, 32858696386765, 265001681344568, 2149447880547398, 17524254766905368, 143540915998174577, 1180736721910617182
Offset: 1

Views

Author

N. J. A. Sloane, Mar 05 2014

Keywords

Crossrefs

Programs

  • Maple
    a := n -> hypergeom([1/2, -n, -n], [1, 2], 4) - 1:
    seq(simplify(a(n)), n = 1..22);  # Peter Luschny, Dec 13 2024
  • PARI
    a(n)=sum(k=1,n,binomial(n,k)^2*binomial(2*k,k)/(k+1)) \\ Andrew Howroyd, Dec 13 2024

Formula

From Andrew Howroyd, Dec 13 2024: (Start)
a(n) = Sum_{k=1..n} binomial(n,k)^2 * A000108(k).
a(n) = A086618(n) - 1. (End)

A238116 Number of continuations arising in matrix method for enumerating Hamiltonian cycles on 2n X 2n grid.

Original entry on oeis.org

1, 14, 162, 1966, 25567, 351880, 5056350, 75100735, 1144833705, 17821104101
Offset: 1

Views

Author

N. J. A. Sloane, Mar 05 2014

Keywords

Crossrefs

A238117 Number of states with reflective symmetry arising in matrix method for enumerating Hamiltonian cycles on 2n X 2n grid.

Original entry on oeis.org

1, 4, 14, 40, 120, 320, 946, 2496, 7418, 19616
Offset: 1

Views

Author

N. J. A. Sloane, Mar 05 2014

Keywords

Crossrefs

A238118 Number of continuations with reflective symmetry arising in matrix method for enumerating Hamiltonian cycles on 2n X 2n grid.

Original entry on oeis.org

1, 6, 20, 101, 327, 1560, 5333, 24727, 88422, 403552
Offset: 1

Views

Author

N. J. A. Sloane, Mar 05 2014

Keywords

Crossrefs

Showing 1-6 of 6 results.