Original entry on oeis.org
2, 12, 2144, 9277152, 934520913216, 2152453777211211412, 112252999240982874562527216, 131765033045251672652319572331061144, 3467852755777932367855581588111341658695967892
Offset: 1
A096969
Number of ways to number the cells of an n X n square grid with 1,2,3,...,n^2 so that successive integers are in adjacent cells (horizontally or vertically).
Original entry on oeis.org
1, 8, 40, 552, 8648, 458696, 27070560, 6046626568, 1490832682992, 1460089659025264, 1573342970540617696, 6905329711608694708440, 33304011435341069362631160, 663618176813467308855850585056, 14527222735920532980525200234503048
Offset: 1
One of the 8648 numberings of a 5 X 5 grid is
.
3---2---1 20--21
| | |
4 17--18--19 22
| | |
5 16--15--14 23
| | |
6 9--10 13 24
| | | | |
7---8 11--12 25
- Andrew Howroyd, Table of n, a(n) for n = 1..17
- Nicolas Bělohoubek, All possible paths in 4th term (552) presented by A..D 1..4 coordination system.
- Nicolas Bělohoubek, All possible paths in 5th term (8648) presented by A..E 1..5 coordination system.
- Nicolas Bělohoubek, All possible paths in 5th term (8648) in image, blue to red.
- Stéphane Duguay and Steven Pigeon, Comparison of Pixel Correlation Induced by Space-Filling Curves on 2D Image Data, The 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (Metz, France, 2019) Vol. 1, 294-297.
- Mary Grace Hanson and David A. Nash, Minimal and maximal Numbrix puzzles, arXiv:1706.09389 [math.CO], 2017.
- Eric Weisstein's World of Mathematics, Grid Graph
- Eric Weisstein's World of Mathematics, Hamiltonian Path
- Index entries for sequences related to graphs, Hamiltonian
A238115
Number of states arising in matrix method for enumerating Hamiltonian cycles on a 2n X 2n grid.
Original entry on oeis.org
1, 6, 32, 182, 1117, 7280, 49625, 349998, 2535077, 18758264, 141254654, 1079364104, 8350678169, 65298467486, 515349097712, 4100346740510, 32858696386765, 265001681344568, 2149447880547398, 17524254766905368, 143540915998174577, 1180736721910617182
Offset: 1
-
a := n -> hypergeom([1/2, -n, -n], [1, 2], 4) - 1:
seq(simplify(a(n)), n = 1..22); # Peter Luschny, Dec 13 2024
-
a(n)=sum(k=1,n,binomial(n,k)^2*binomial(2*k,k)/(k+1)) \\ Andrew Howroyd, Dec 13 2024
A238116
Number of continuations arising in matrix method for enumerating Hamiltonian cycles on 2n X 2n grid.
Original entry on oeis.org
1, 14, 162, 1966, 25567, 351880, 5056350, 75100735, 1144833705, 17821104101
Offset: 1
A238117
Number of states with reflective symmetry arising in matrix method for enumerating Hamiltonian cycles on 2n X 2n grid.
Original entry on oeis.org
1, 4, 14, 40, 120, 320, 946, 2496, 7418, 19616
Offset: 1
A238118
Number of continuations with reflective symmetry arising in matrix method for enumerating Hamiltonian cycles on 2n X 2n grid.
Original entry on oeis.org
1, 6, 20, 101, 327, 1560, 5333, 24727, 88422, 403552
Offset: 1
Showing 1-6 of 6 results.
Comments