cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143290 Number of binary words of length n containing at least one subword 10^{10}1 and no subwords 10^{i}1 with i<10.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 17, 23, 31, 41, 53, 67, 83, 101, 121, 143, 168, 198, 236, 285, 348, 428, 528, 651, 800, 978, 1188, 1434, 1722, 2061, 2464, 2948, 3534, 4247, 5116, 6174, 7458, 9009, 10873, 13103, 15762, 18927
Offset: 0

Views

Author

Alois P. Heinz, Aug 04 2008

Keywords

Examples

			a(13)=2 because 2 binary words of length 13 have at least one subword 10^{10}1 and no subwords 10^{i}1 with i<10: 0100000000001, 1000000000010.
		

Crossrefs

Cf. A017905, A017906, 10th column of A143291.

Programs

  • Magma
    [n le 12 select 0 else n le 23 select n-12 else 2*Self(n-1)-Self(n-2) +Self(n-11)-Self(n-13)-Self(n-23): n in [1..60]]; // Vincenzo Librandi, Jun 05 2013
  • Maple
    a:= n-> coeff(series(x^12/((x^11+x-1)*(x^12+x-1)), x, n+1), x, n):
    seq(a(n), n=0..60);
  • Mathematica
    CoefficientList[Series[x^12 / ((x^11 + x - 1) (x^12 + x - 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Jun 05 2013 *)
    LinearRecurrence[{2,-1,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,-1},{0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,4,5,6,7,8,9,10,11},80] (* Harvey P. Dale, Aug 20 2021 *)

Formula

G.f.: x^12/((x^11+x-1)*(x^12+x-1)).
a(n) = A017905(n+21)-A017906(n+23).
a(n) = 2*a(n-1) -a(n-2) +a(n-11) -a(n-13) -a(n-23). - Vincenzo Librandi, Jun 05 2013