cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143298 Decimal expansion of Gieseking's constant.

Original entry on oeis.org

1, 0, 1, 4, 9, 4, 1, 6, 0, 6, 4, 0, 9, 6, 5, 3, 6, 2, 5, 0, 2, 1, 2, 0, 2, 5, 5, 4, 2, 7, 4, 5, 2, 0, 2, 8, 5, 9, 4, 1, 6, 8, 9, 3, 0, 7, 5, 3, 0, 2, 9, 9, 7, 9, 2, 0, 1, 7, 4, 8, 9, 1, 0, 6, 7, 7, 6, 5, 9, 7, 4, 7, 6, 2, 5, 8, 2, 4, 4, 0, 2, 2, 1, 3, 6, 4, 7, 0, 3, 5, 4, 2, 2, 8, 2, 5, 6, 6, 9, 4, 9, 4, 5, 8, 6
Offset: 1

Views

Author

Eric W. Weisstein, Aug 05 2008

Keywords

Comments

The largest possible volume of a tetrahedron in hyperbolic space. Named by Adams (1998) after German mathematician Hugo Gieseking (1887 - 1915). - Amiram Eldar, Aug 14 2020

Examples

			1.0149416064096536250...
		

References

  • J. Borwein and P. Borwein, Experimental and computational mathematics: Selected writings, Perfectly Scientific Press, 2010, p. 106.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 233, 512.

Crossrefs

Programs

  • Maple
    sqrt(3)/6*(Psi(1,1/3)-2*Pi^2/3) ; evalf(%) ; # R. J. Mathar, Sep 23 2013
  • Mathematica
    N[(9 - PolyGamma[1, 2/3] + PolyGamma[1, 4/3])/(4*Sqrt[3]), 105] // RealDigits // First
  • PARI
    polygamma(n, x) = if (n == 0, psi(x), (-1)^(n+1)*n!*zetahurwitz(n+1, x));
    sqrt(3)/6*(polygamma(1, 1/3) - 2*Pi^2/3)
    (9 - polygamma(1, 2/3) + polygamma(1, 4/3))/(4*sqrt(3)) \\ Gheorghe Coserea, Sep 30 2018
    
  • PARI
    clausen(n, x) = my(z = polylog(n, exp(I*x))); if (n%2, real(z), imag(z));
    clausen(2, Pi/3) \\ Gheorghe Coserea, Sep 30 2018
    
  • PARI
    sqrt(3)/2 * sumpos(n=1, 1/(6*n-4)^2 + 1/(6*n-5)^2 - 1/(6*n-1)^2 - 1/(6*n-2)^2) \\ Gheorghe Coserea, Sep 30 2018

Formula

Equals (9 - PolyGamma(1, 2/3) + PolyGamma(1, 4/3))/(4*sqrt(3)).
Equals Sum_{k>0} sin(k*Pi/3)/k^2; (also equals (sqrt(3)/2)*Sum_{k>=1} -1/(6k-1)^2 - 1/(6k-2)^2 + 1/(6k-4)^2 + 1/(6k-5)^2). - Jean-François Alcover, Jun 19 2016, from the book by J. & P. Borwein.
From Amiram Eldar, Aug 14 2020: (Start)
Equals Integral_{x=0..2*Pi/3} log(2*cos(x/2)).
Equals (3*sqrt(3)/4) * (1 - Sum_{k>=0} 1/(3*k + 2)^2 + Sum_{k>=1} 1/(3*k + 1)^2) = (3*sqrt(3)/4) * Sum_{k>=1} A049347(k-1)/k^2.
Equals Pi * A244996 = Pi * log(A242710). (End)
Equals A091518/2 = A244345/5. - Hugo Pfoertner, Sep 16 2024