A143326 Table T(n,k) by antidiagonals. T(n,k) is the number of primitive (=aperiodic) k-ary words with length less than or equal to n (n,k >= 1).
1, 2, 1, 3, 4, 1, 4, 9, 10, 1, 5, 16, 33, 22, 1, 6, 25, 76, 105, 52, 1, 7, 36, 145, 316, 345, 106, 1, 8, 49, 246, 745, 1336, 1041, 232, 1, 9, 64, 385, 1506, 3865, 5356, 3225, 472, 1, 10, 81, 568, 2737, 9276, 19345, 21736, 9705, 976, 1, 11, 100, 801, 4600, 19537, 55686
Offset: 1
Examples
T(2,3) = 9, because there are 9 primitive words of length less than or equal to 2 over 3-letter alphabet {a,b,c}: a, b, c, ab, ac, ba, bc, ca, cb; note that the non-primitive words aa, bb and cc don't belong to the list; secondly note that the words in the list need not be Lyndon words, for example ba can be derived from ab by a cyclic rotation of the positions. Table begins: 1, 2, 3, 4, 5, 6, 7, 8, ... 1, 4, 9, 16, 25, 36, 49, 64, ... 1, 10, 33, 76, 145, 246, 385, 568, ... 1, 22, 105, 316, 745, 1506, 2737, 4600, ... 1, 52, 345, 1336, 3865, 9276, 19537, 37360, ... 1, 106, 1041, 5356, 19345, 55686, 136801, 298936, ... 1, 232, 3225, 21736, 97465, 335616, 960337, 2396080, ... 1, 472, 9705, 87016, 487465, 2013936, 6722737, 19169200, ... ... From _Wolfdieter Lang_, Feb 01 2014: (Start) The triangle Tri(n,m) := T(m,n-(m-1)) begins: n\m 1 2 3 4 5 6 7 8 9 10 ... 1: 1 2: 2 1 3: 3 4 1 4: 4 9 10 1 5: 5 16 33 22 1 6: 6 25 76 105 52 1 7: 7 36 145 316 345 106 1 8: 8 49 246 745 1336 1041 232 1 9: 9 64 385 1506 3865 5356 3225 472 1 10: 10 81 568 2737 9276 19345 21736 9705 976 1 ... For the columns see A000027, A000290, A081437, ... (End)
Links
Crossrefs
Programs
-
Maple
with(numtheory): f0:= proc(n) option remember; unapply(k^n-add(f0(d)(k), d=divisors(n) minus {n}), k) end: g0:= proc(n) option remember; unapply(add(f0(j)(x), j=1..n), x) end: T:= (n, k)-> g0(n)(k): seq(seq(T(n, 1+d-n), n=1..d), d=1..12);
-
Mathematica
f0[n_] := f0[n] = Function[k, k^n-Sum[f0[d][k], {d, Divisors[n] // Most}]]; g0[n_] := g0[n] = Function[x, Sum[f0[j][x], {j, 1, n}]]; T[n_, k_] := g0[n][k]; Table[T[n, 1+d-n], {d, 1, 12}, {n, 1, d}]//Flatten (* Jean-François Alcover, Feb 12 2014, translated from Maple *)
Comments