A143327
Table T(n,k) by antidiagonals. T(n,k) is the number of primitive (=aperiodic) k-ary words (n,k >= 1) with length less than or equal to n which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 11, 11, 1, 1, 5, 19, 35, 26, 1, 1, 6, 29, 79, 115, 53, 1, 1, 7, 41, 149, 334, 347, 116, 1, 1, 8, 55, 251, 773, 1339, 1075, 236, 1, 1, 9, 71, 391, 1546, 3869, 5434, 3235, 488, 1, 1, 10, 89, 575, 2791, 9281, 19493, 21754, 9787, 983, 1, 1, 11
Offset: 1
T(3,3) = 11, because 11 words of length <=3 over 3-letter alphabet {a,b,c} are primitive and earlier than others derived by cyclic shifts of the alphabet: a, ab, ac, aab, aac, aba, abb, abc, aca, acb, acc.
Table begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, 8, ...
1, 5, 11, 19, 29, 41, 55, 71, ...
1, 11, 35, 79, 149, 251, 391, 575, ...
1, 26, 115, 334, 773, 1546, 2791, 4670, ...
1, 53, 347, 1339, 3869, 9281, 19543, 37367, ...
1, 116, 1075, 5434, 19493, 55936, 137191, 299510, ...
1, 236, 3235, 21754, 97493, 335656, 960391, 2396150, ...
-
with(numtheory):
f1:= proc (n) option remember; unapply(k^(n-1)
-add(f1(d)(k), d=divisors(n) minus {n}), k)
end:
g1:= proc(n) option remember; unapply(add(f1(j)(x), j=1..n), x) end:
T:= (n, k)-> g1(n)(k):
seq(seq(T(n, 1+d-n), n=1..d), d=1..12);
-
t[n_, k_] := Sum[k^(d-1)*MoebiusMu[j/d], {j, 1, n}, {d, Divisors[j]}]; Table[t[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Dec 13 2013 *)
A320087
Number of primitive (=aperiodic) ternary words with length less than or equal to n which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.
Original entry on oeis.org
1, 3, 11, 35, 115, 347, 1075, 3235, 9787, 29387, 88435, 265315, 796755, 2390347, 7173227, 21519947, 64566667, 193700035, 581120523, 1743362283, 5230145947, 15690440099, 47071499707, 141214499227, 423644035627, 1270932113627, 3812797935395, 11438393826035
Offset: 1
-
b:= n-> add(`if`(d=n, 3^(n-1), -b(d)), d=numtheory[divisors](n)):
a:= proc(n) option remember; b(n)+`if`(n<2, 0, a(n-1)) end:
seq(a(n), n=1..30);
-
nmax = 20; Rest[CoefficientList[Series[1/(1-x) * Sum[MoebiusMu[k] * x^k / (1 - 3*x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Dec 11 2020 *)
-
a(n) = sum(j=1, n, sumdiv(j, d, 3^(d-1)*moebius(j/d))); \\ Michel Marcus, Dec 11 2020
A320088
Number of primitive (=aperiodic) 4-ary words with length less than or equal to n which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.
Original entry on oeis.org
1, 4, 19, 79, 334, 1339, 5434, 21754, 87274, 349159, 1397734, 5590954, 22368169, 89472934, 357908119, 1431633559, 5726600854, 22906403494, 91625880229, 366503524969, 1466015148634, 5864060611159, 23456246655574, 93824986622614, 375299963333014, 1501199853398419
Offset: 1
-
b:= n-> add(`if`(d=n, 4^(n-1), -b(d)), d=numtheory[divisors](n)):
a:= proc(n) option remember; b(n)+`if`(n<2, 0, a(n-1)) end:
seq(a(n), n=1..30);
-
nmax = 20; Rest[CoefficientList[Series[1/(1-x) * Sum[MoebiusMu[k] * x^k / (1 - 4*x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Dec 11 2020 *)
-
a(n) = sum(j=1, n, sumdiv(j, d, 4^(d-1)*moebius(j/d))); \\ Michel Marcus, Dec 11 2020
A320089
Number of primitive (=aperiodic) 5-ary words with length less than or equal to n which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.
Original entry on oeis.org
1, 5, 29, 149, 773, 3869, 19493, 97493, 488093, 2440589, 12206213, 61031093, 305171717, 1525859213, 7629374189, 38146874189, 190734764813, 953673824213, 4768371089837, 23841855464717, 119209287089693, 596046435527189, 2980232226542813, 14901161132714813
Offset: 1
-
b:= n-> add(`if`(d=n, 5^(n-1), -b(d)), d=numtheory[divisors](n)):
a:= proc(n) option remember; b(n)+`if`(n<2, 0, a(n-1)) end:
seq(a(n), n=1..30);
-
nmax = 20; Rest[CoefficientList[Series[1/(1-x) * Sum[MoebiusMu[k] * x^k / (1 - 5*x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Dec 11 2020 *)
-
a(n) = sum(j=1, n, sumdiv(j, d, 5^(d-1)*moebius(j/d))); \\ Michel Marcus, Dec 11 2020
A320090
Number of primitive (=aperiodic) 6-ary words with length less than or equal to n which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.
Original entry on oeis.org
1, 6, 41, 251, 1546, 9281, 55936, 335656, 2015236, 12091631, 72557806, 435346876, 2612129211, 15672776566, 94036939331, 564221643971, 3385331551426, 20311989308806, 121871945977221, 731231675909811, 4387390115926096, 26324340695837771, 157946044538104906
Offset: 1
-
b:= n-> add(`if`(d=n, 6^(n-1), -b(d)), d=numtheory[divisors](n)):
a:= proc(n) option remember; b(n)+`if`(n<2, 0, a(n-1)) end:
seq(a(n), n=1..30);
-
nmax = 20; Rest[CoefficientList[Series[1/(1-x) * Sum[MoebiusMu[k] * x^k / (1 - 6*x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Dec 11 2020 *)
-
a(n) = sum(j=1, n, sumdiv(j, d, 6^(d-1)*moebius(j/d))); \\ Michel Marcus, Dec 11 2020
A320091
Number of primitive (=aperiodic) 7-ary words with length less than or equal to n which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.
Original entry on oeis.org
1, 7, 55, 391, 2791, 19543, 137191, 960391, 6725143, 47076343, 329551591, 2306861191, 16148148391, 113037041143, 791260111543, 5538820797943, 38771751367543, 271402259573191, 1899815857483639, 13298711002502839, 93090977299997143, 651636841100805895
Offset: 1
-
b:= n-> add(`if`(d=n, 7^(n-1), -b(d)), d=numtheory[divisors](n)):
a:= proc(n) option remember; b(n)+`if`(n<2, 0, a(n-1)) end:
seq(a(n), n=1..30);
-
a(n) = sum(j=1, n, sumdiv(j, d, 7^(d-1)*moebius(j/d))); \\ Michel Marcus, Dec 11 2020
A320092
Number of primitive (=aperiodic) 8-ary words with length less than or equal to n which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.
Original entry on oeis.org
1, 8, 71, 575, 4670, 37367, 299510, 2396150, 19173302, 153386927, 1227128750, 9817030070, 78536506805, 628292058542, 5026338565487, 40210708557167, 321685685267822, 2573485482143150, 20587883991625133, 164703071933262773, 1317624576539847542
Offset: 1
-
b:= n-> add(`if`(d=n, 8^(n-1), -b(d)), d=numtheory[divisors](n)):
a:= proc(n) option remember; b(n)+`if`(n<2, 0, a(n-1)) end:
seq(a(n), n=1..30);
-
a(n) = sum(j=1, n, sumdiv(j, d, 8^(d-1)*moebius(j/d))); \\ Michel Marcus, Dec 11 2020
A320093
Number of primitive (=aperiodic) 9-ary words with length less than or equal to n which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.
Original entry on oeis.org
1, 9, 89, 809, 7369, 66329, 597769, 5380009, 48426649, 435840569, 3922624969, 35303624809, 317733161289, 2859598458169, 25736390906489, 231627518218169, 2084647707070009, 18761829363630889, 168856464660630009, 1519708181946200889, 13677373641002598169
Offset: 1
-
b:= n-> add(`if`(d=n, 9^(n-1), -b(d)), d=numtheory[divisors](n)):
a:= proc(n) option remember; b(n)+`if`(n<2, 0, a(n-1)) end:
seq(a(n), n=1..30);
-
a(n) = sum(j=1, n, sumdiv(j, d, 9^(d-1)*moebius(j/d))); \\ Michel Marcus, Dec 11 2020
A320094
Number of primitive (=aperiodic) 10-ary words with length less than or equal to n which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.
Original entry on oeis.org
1, 10, 109, 1099, 11098, 110989, 1110988, 11109988, 111109888, 1111099879, 11111099878, 111110998888, 1111110998887, 11111109998878, 111111109988779, 1111111099988779, 11111111099988778, 111111110999888878, 1111111110999888877, 11111111109999887887
Offset: 1
-
b:= n-> add(`if`(d=n, 10^(n-1), -b(d)), d=numtheory[divisors](n)):
a:= proc(n) option remember; b(n)+`if`(n<2, 0, a(n-1)) end:
seq(a(n), n=1..30);
-
a(n) = sum(j=1, n, sumdiv(j, d, 10^(d-1)*moebius(j/d))); \\ Michel Marcus, Dec 11 2020
A320095
Number of primitive (=aperiodic) n-ary words with length less than or equal to n which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.
Original entry on oeis.org
1, 2, 11, 79, 773, 9281, 137191, 2396150, 48426649, 1111099879, 28531150811, 810554312866, 25239591811405, 854769747700454, 31278135014945519, 1229782937960902111, 51702516367459973873, 2314494592652832016030, 109912203092221714132219, 5518821052631039996623577
Offset: 1
-
b:= (n, k)-> add(`if`(d=n, k^(n-1), -b(d, k)), d=numtheory[divisors](n)):
g:= proc(n, k) option remember; b(n, k)+`if`(n<2, 0, g(n-1, k)) end:
a:= n-> g(n$2):
seq(a(n), n=1..23);
-
a[n_] := Sum[n^(d-1)*MoebiusMu[j/d], {j, 1, n}, {d, Divisors[j]}];
Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Oct 25 2022, after A143327 *)
-
a(n) = sum(j=1, n, sumdiv(j, d, n^(d-1) * moebius(j/d))); \\ Michel Marcus, Feb 16 2020
Showing 1-10 of 10 results.
Comments