A143382 Numerator of Sum_{k=0..n} 1/k!!.
1, 2, 5, 17, 71, 121, 731, 1711, 41099, 370019, 740101, 2713789, 1206137, 423355111, 846710651, 1814380259, 203210595443, 12654139763, 531473870981, 43758015399281, 525096184837561, 441080795274037, 22054039763790029
Offset: 0
Examples
a(3) = 17 because 1/0!! + 1/1!! + 1/2!! + 1/3!! = 17/6. a(15) = 1814380259 because 1814380259/593049600 = 1/1 + 1/1 + 1/2 + 1/3 + 1/8 + 1/15 + 1/48 + 1/105 + 1/384 + 1/945 + 1/3840 + 1/10395 + 1/46080 + 1/135135 + 1/645120 + 1/2027025.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Eric W. Weisstein, Double Factorial. Gives formula for limit of series, which was independently derived by Max Alekseyev.
Programs
-
Magma
[n le 0 select 1 else Numerator( 1 + (&+[ 1/(0 + (&*[k-2*j: j in [0..Floor((k-1)/2)]])) : k in [1..n]]) ): n in [0..25]]; // G. C. Greubel, Mar 28 2019
-
Mathematica
Table[Numerator[Sum[1/k!!, {k, 0, n}]], {n, 0, 30}] (* G. C. Greubel, Mar 28 2019 *) Accumulate[1/Range[0,30]!!]//Numerator (* Harvey P. Dale, May 19 2023 *)
-
PARI
vector(25, n, n--; numerator(sum(k=0,n, 1/prod(j=0,floor((k-1)/2), (k - 2*j)) ))) \\ G. C. Greubel, Mar 28 2019
-
Sage
[numerator(sum( 1/product((k - 2*j) for j in (0..floor((k-1)/2))) for k in (0..n))) for n in (0..25)] # G. C. Greubel, Mar 28 2019
Formula
Numerators of Sum_{k=0..n} 1/k!! = Sum_{k=0..n} 1/A006882(k).
Comments