A143383 Denominator of Sum_{k=0..n} 1/k!!.
1, 1, 2, 6, 24, 40, 240, 560, 13440, 120960, 241920, 887040, 394240, 138378240, 276756480, 593049600, 66421555200, 4136140800, 173717913600, 14302774886400, 171633298636800, 144171970854912, 7208598542745600, 283414985441280
Offset: 0
Examples
a(3) = 6 because 1/0!! + 1/1!! + 1/2!! + 1/3!! = 17/6. a(15) = 593049600 because 1814380259/593049600 = 1/1 + 1/1 + 1/2 + 1/3 + 1/8 + 1/15 + 1/48 + 1/105 + 1/384 + 1/945 + 1/3840 + 1/10395 + 1/46080 + 1/135135 + 1/645120 + 1/2027025.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Eric W. Weisstein, Double Factorial. Gives formula for limit of series, which was independently derived by Max Alekseyev.
Programs
-
Magma
[n le 0 select 1 else Denominator( 1 + (&+[ 1/(0 + (&*[k-2*j: j in [0..Floor((k-1)/2)]])) : k in [1..n]]) ): n in [0..25]]; // G. C. Greubel, Mar 28 2019
-
Mathematica
Table[Denominator[Sum[1/k!!, {k,0,n}]], {n,0,25}] (* G. C. Greubel, Mar 28 2019 *)
-
PARI
vector(25, n, n--; denominator(sum(k=0,n, 1/prod(j=0,floor((k-1)/2), (k - 2*j)) ))) \\ G. C. Greubel, Mar 28 2019
-
Sage
[denominator(sum(1/product((k-2*j) for j in (0..floor((k-1)/2))) for k in (0..n))) for n in (0..25)] # G. C. Greubel, Mar 28 2019
Formula
Denominators of Sum_{k=0..n} 1/k!! = Sum_{k=0..n} 1/A006882(k).
Comments