A143388 a(n) = Sum_{k=0..n} A033184(n,k)*A033184(n,n-k), where Catalan triangle entry A033184(n,k) = C(2*n-k,n-k)*(k+1)/(n+1).
1, 2, 8, 40, 221, 1288, 7752, 47652, 297275, 1874730, 11920740, 76292736, 490828828, 3171317360, 20563942288, 133749903324, 872196460359, 5700580759510, 37332393806400, 244914161562840, 1609234420792845, 10588423438256160, 69757296470927520, 460089876775105200
Offset: 0
Examples
Catalan triangle A033184 begins: 1; 1, 1; 2, 2, 1; 5, 5, 3, 1; 14, 14, 9, 4, 1; 42, 42, 28, 14, 5, 1; ... where column k equals the (k+1)-fold convolution of A000108, k>=0. Illustrate a(n) = Sum_{k=0..n} A033184(n,k)*A033184(n,n-k): a(1) = 1*1 + 1*1 = 2; a(2) = 2*1 + 2*2 + 1*2 = 8; a(3) = 5*1 + 5*3 + 3*5 + 1*5 = 40; a(4) = 14*1 + 14*4 + 9*9 + 4*14 + 1*14 = 221.
Links
- Ping Sun, Enumeration formulas for standard Young tableaux of nearly hollow rectangular shapes, Discrete Mathematics, Volume 341, Issue 4, April 2018, Pages 1144-1149.
Programs
-
PARI
{a(n)=sum(k=0,n,binomial(2*n-k,n-k)*(k+1)/(n+1)*binomial(n+k,k)*(n-k+1)/(n+1))}
-
PARI
{a(n)=(n^2 + 3*n + 6)*(3*n + 1)!/(n!*(2*n + 3)!)}
Formula
a(n) = (n^2 + 3*n + 6)*(3*n + 1)!/(n!*(2*n + 3)!).
a(n) ~ 3*sqrt(3)*(27/4)^n/(16*sqrt(n*Pi)). - Stefano Spezia, May 31 2025
Extensions
a(21)-a(23) from Stefano Spezia, May 31 2025