cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143397 Triangle T(n,k)=number of forests of labeled rooted trees of height at most 1, with n labels and k nodes, where any root may contain >= 1 labels, n >= 0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 6, 10, 0, 1, 11, 36, 41, 0, 1, 20, 105, 230, 196, 0, 1, 37, 285, 955, 1560, 1057, 0, 1, 70, 756, 3535, 8680, 11277, 6322, 0, 1, 135, 2002, 12453, 41720, 80682, 86800, 41393, 0, 1, 264, 5347, 43008, 186669, 485982, 773724, 708948, 293608
Offset: 0

Views

Author

Alois P. Heinz, Aug 12 2008

Keywords

Examples

			T(3,2) = 6: {1,2}{3}, {1,3}{2}, {2,3}{1}, {1,2}<-3, {1,3}<-2, {2,3}<-1.
Triangle begins:
  1;
  0, 1;
  0, 1,  3;
  0, 1,  6,  10;
  0, 1, 11,  36,   41;
  0, 1, 20, 105,  230,  196;
  0, 1, 37, 285,  955, 1560,  1057;
  0, 1, 70, 756, 3535, 8680, 11277, 6322;
  ...
		

Crossrefs

Columns k=0-2: A000007, A000012, A006127. Diagonal: A000248. See also A048993, A008277, A007318, A143405 for row sums.

Programs

  • Maple
    T:= (n,k)-> add(binomial(n, k-t)*Stirling2(n-(k-t),t)*t^(k-t), t=0..k):
    seq(seq(T(n, k), k=0..n), n=0..11);
  • Mathematica
    T[n_, k_] := Sum[Binomial[n, k-t]*StirlingS2[n - (k-t), t]*t^(k-t), {t, 0, k}]; T[0, 0] = 1; T[_, 0] = 0;
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 31 2016, translated from Maple *)

Formula

T(n,k) = Sum_{t=0..k} C(n,k-t) * Stirling2(n-(k-t),t) * t^(k-t).
E.g.f.: exp(y*exp(x*y)*(exp(x)-1)). - Vladeta Jovovic, Dec 08 2008