cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143412 Main diagonal of A143410.

Original entry on oeis.org

1, 3, 37, 743, 20841, 751019, 33065677, 1720166223, 103243039057, 7022246822099, 533794001518581, 44845718374382903, 4126339884444745657, 412678834162848948603, 44573440429472131194781, 5170931768652930067543199, 641240112753392800506551457, 84648865815216502596932335523
Offset: 0

Views

Author

Peter Bala, Aug 14 2008

Keywords

Comments

The sequence of convergents of the continued fraction expansion sqrt(e) = 1 + 2/(3 + 1/(12 + 1/(20 + 1/(28 + 1/(36 + ... ))))) begins [1/1, 5/3, 61/37, 1225/743, ...]. The partial denominators are this sequence; the numerators are A065919. - Peter Bala, Jan 02 2020

Crossrefs

Programs

  • Magma
    I:=[1,3]; [n le 2 select I[n] else 4*(2*n -3)*Self(n - 1) + Self(n-2): n in [1..20]]; // Vincenzo Librandi, Jan 03 2016
  • Maple
    a := n -> (-1)^n*add ((-2)^k*(n+k)!/((n-k)!*k!),k = 0..n): seq(a(n),n = 0..16);
    seq(simplify(2^n*KummerU(-n,-2*n,-1/2)), n=0..17); # Peter Luschny, May 10 2022
  • Mathematica
    RecurrenceTable[{ a[n + 2] == 4*(2 n + 3)*a[n + 1] + a[n], a[0] == 1, a[1] == 3}, a, {n, 0, 20}] (* G. C. Greubel, Jan 03 2016 *)
  • PARI
    a(n) = (-1)^n*sum(k=0,n, (-2)^k*(n+k)!/((n-k)!*k!) ); \\ Joerg Arndt, May 17 2013
    

Formula

a(n) = (-1)^n*Sum_{k = 0..n} (-2)^k*(n+k)!/((n-k)!*k!) = (-1)^n*y_n(-4), where y_n(x) denotes the n-th Bessel polynomial.
Recurrence relation: a(0) = 1, a(1) = 3, a(n) = 4*(2*n-1)*a(n-1) + a(n-2) for n >= 2. Sequence A065919 satisfies the same recurrence relation.
sqrt(e) = 1 + 2*Sum_{n >= 0} (-1)^n/(a(n)*a(n+1)) = 1 + 2*(1/(1*3) - 1/(3*37) + 1/(37*743) - ...) (see A019774).
G.f.: 1/Q(0), where Q(k)= 1 + x - 4*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 17 2013
a(n) = (-1)^n * hypergeom([-n,n+1],[],2). - Robert Israel, Jan 03 2016
a(n) ~ 2^(3*n + 1/2) * n^n / exp(n + 1/4). - Vaclav Kotesovec, Jan 02 2020
a(n) is the expectation of U_{2n}(X) where X is a standard Gaussian random variable and U_n is the n-th Chebyshev polynomial of second kind (conjectured). - Benjamin Dadoun, Dec 16 2020
a(n) = 2^n*KummerU(-n, -2*n, -1/2). - Peter Luschny, May 10 2022