A143414 Apéry-like numbers for the constant 1/e: a(n) = (1/(n-1)!)*Sum_{k = 0..n-1} binomial(n-1,k)*(2*n-k)!.
0, 2, 30, 492, 9620, 222630, 5989242, 184139480, 6377545512, 245868202890, 10446648201110, 485126443539012, 24449173476952380, 1329144227959100462, 77535552689576436210, 4831278674685354629040, 320262424087652686405712
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..365
- A. van der Poorten, A proof that Euler missed ... Apery's proof of the irrationality of zeta(3). An informal report, Math. Intelligencer 1 (1978/79), no. 4, 195-203.
Crossrefs
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
Programs
-
Maple
a := n -> 1/(n-1)!*add (binomial(n-1,k)*(2*n-k)!,k = 0..n-1): seq(a(n),n = 0..19); # Alternative: A143414 := n -> `if`(n=0, 0, ((2*n)!/(n-1)!)*hypergeom([1-n], [-2*n], 1)): seq(simplify(A143414(n)), n = 0..16); # Peter Luschny, May 14 2020
-
Mathematica
Table[(1/(n-1)!)*Sum[Binomial[n-1,k]*(2*n-k)!, {k,0,n-1}], {n,0,50}] (* G. C. Greubel, Oct 24 2017 *)
-
PARI
for(n=0,25, print1((1/(n-1)!)*sum(k=0,n-1, binomial(n-1,k)*(2*n-k)!), ", ")) \\ G. C. Greubel, Oct 24 2017
Formula
a(n) = (1/(n-1)!)*Sum_{k = 0..n-1} binomial(n-1,k)*(2*n-k)!.
Recurrence relation: a(0) = 0, a(1) = 2, (n-1)^2*a(n) - n^2*a(n-2) = (2*n-1)*(2*n^2-2*n+1)*a(n-1), n >= 2.
Let b(n) denote the solution to this recurrence with initial conditions b(0) = -1, b(1) = 1. Then b(n) = A143413(n) = (1/(n-1)!)*Sum_{k = 0..n+1} (-1)^k*binomial(n+1,k)*(2*n-k)!.
The rational number b(n)/a(n) is equal to the Padé approximation to exp(x) of degree (n+1,n-1) evaluated at x = -1 and b(n)/a(n) -> 1/e very rapidly. For example, |b(100)/a(100) - 1/e| is approximately 2.177 * 10^(-437).
The identity a(n)*b(n-1) - a(n-1)*b(n) = (-1)^n *2*n^2 leads to rapidly converging series for the constants 1/e and e: 1/e = 1/2 - 2*Sum_{n >= 2} (-1)^n * n^2/(a(n)*a(n-1)) = 1/2 - 2*(2^2/(2*30) - 3^2/(30*492) + 4^2/(492*9620) - ...); e = 2 * Sum_{n >= 1} (-1)^n * n^2/(b(n)*b(n-1)) = 2*(1 + 2^2/(1*11) - 3^2/(11*181) + 4^2/(181*3539) - ...).
a(n) = (BesselK(n-1/2,1/2)-(1-2*n)*BesselK(n+1/2,1/2)) * exp(1/2)/(2*Pi^(1/2)). - Mark van Hoeij, Nov 12 2009
a(n) = ((2*n)!/(n-1)!)*hypergeom([1-n], [-2*n], 1) for n > 0. - Peter Luschny, May 14 2020
a(n) ~ 2^(2*n + 1/2) * n^(n+1) / exp(n - 1/2). - Vaclav Kotesovec, Jul 11 2021
Comments