A143418 Triangle read by rows. T(n,k) = binomial(n,k)*(binomial(n,k)-1)/2.
1, 3, 3, 6, 15, 6, 10, 45, 45, 10, 15, 105, 190, 105, 15, 21, 210, 595, 595, 210, 21, 28, 378, 1540, 2415, 1540, 378, 28, 36, 630, 3486, 7875, 7875, 3486, 630, 36, 45, 990, 7140, 21945, 31626, 21945, 7140, 990, 45, 55, 1485, 13530, 54285, 106491, 106491
Offset: 1
Examples
Row 4 of Pascal's triangle (1, 4, 6, 4, 1) with each term squared = (1, 16, 36, 16, 1), then subtracting (1, 4, 6, 4, 1) = (0, 12, 30, 12, 0). Dividing by 2 and deleting the zeros, we get row 4 of A143418: (6, 15, 6). First few rows of the triangle = 1; 3, 3; 6, 15, 6; 10, 45, 45, 10; 15, 105, 190, 105, 15; 21, 210, 595, 595, 210, 21; 28, 378, 1540, 2415, 1540, 378, 28; ...
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
A143418 := proc(n,k) binomial(n,k)*(binomial(n,k)-1)/2 ; end proc: seq(seq(A143418(n,k),k=1..n-1),n=1..12) ; # R. J. Mathar, Apr 04 2012
-
Mathematica
Table[Binomial[n,k] (Binomial[n,k]-1)/2,{n,20},{k,n-1}]//Flatten (* Harvey P. Dale, Jun 14 2021 *)
Formula
T(n,k) = A065420(n-1,k-1)/2. - R. J. Mathar, Apr 04 2012
Extensions
Corrected by Harvey P. Dale, Jun 14 2021
Comments