A143431 Periodic length 8 sequence [1, -1, 1, -1, -1, 1, -1, 1, ...].
1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1
Offset: 0
Examples
1 - x + x^2 - x^3 - x^4 + x^5 - x^6 + x^7 + x^8 - x^9 + x^10 - x^11 + ...
Crossrefs
Convolution inverse of A143432.
Programs
-
Mathematica
LinearRecurrence[{0,0,0,-1},{1,-1,1,-1},120] (* or *) PadRight[{},120,{1,-1,1,-1,-1,1,-1,1}] (* Harvey P. Dale, Jul 15 2025 *)
-
PARI
a(n) = (-1)^(n + n\4)
Formula
Euler transform of length 8 sequence [ -1, 1, 0, -2, 0, 0, 0, 1].
a(-1 - n) = a(n). a(n + 4) = - a(n).
G.f.: (1 - x) * (1 + x^2) / (1 + x^4).
Comments