cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A143433 Expansion of f(-x, x^3) in powers of x where f(,) is Ramanujan's general theta function.

Original entry on oeis.org

1, -1, 0, 1, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Aug 14 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x + x^3 - x^6 - x^10 + x^15 - x^21 + x^28 + x^36 - x^45 + x^55 + ...
G.f. = q - q^9 + q^25 - q^49 - q^81 + q^121 - q^169 + q^225 + q^289 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, -x^4] QPochhammer[ -x^3, -x^4] QPochhammer[ -x^4], {x, 0, n}]; (* Michael Somos, Jun 03 2015 *)
  • PARI
    {a(n) = if( n<0, 0, if( issquare(8*n + 1, &n), n = n\2; (-1)^(n + n\4), 0))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k)^( [1, 1, 0, -1, -1, -1, 1, 1, 2, 1, 1, -1, -1, -1, 0, 1, 1] [k%16 + 1]), 1 + x * O(x^n)), n))};

Formula

Euler transform of period 16 sequence [ -1, 0, 1, 1, 1, -1, -1, -2, -1, -1, 1, 1, 1, 0, -1, -1, ...].
Pattern of signs of nonzero terms is A143431.
G.f.: Sum_{k>=0} (-1)^(k + floor(k/4)) * x^(k * (k+1) / 2).
a(n) = (-1)^n * A143434(n).
a(2*n) = A244465(n). a(2*n + 1) = - A244525(n). a(3*n + 2) = a(5*n + 2) = a(5*n + 4) = 0.

A143432 Ultimately period 4 sequence [ 2, 2, 0, 0, ...] with a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2
Offset: 0

Views

Author

Michael Somos, Aug 14 2008, Sep 18 2008

Keywords

Crossrefs

Convolution inverse of A143431.

Programs

  • Mathematica
    PadRight[{1,1},120,{2,2,0,0}] (* Harvey P. Dale, Feb 13 2016 *)
  • PARI
    {a(n) = if(n<0, 0, n = n\2; if( n%2, 0, (n>1)+1 ))}

Formula

Euler transform of length 8 sequence [ 1, -1, 0, 2, 0, 0, 0, -1].
a(4*n + 2) = a(4*n + 3) = 0. a(4*n) = a(4*n + 1) = 2 unless n < 1.
G.f.: (1 + x^4) / ((1 - x) * (1 + x^2)).
a(n) = ((n+2) mod 4) - (n mod 2) - floor(3/(n+2)). - Wesley Ivan Hurt, Jun 30 2013

A162285 Periodic length 8 sequence [1, -1, -1, 1, -1, 1, 1, -1, ...].

Original entry on oeis.org

1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1
Offset: 0

Views

Author

Michael Somos, Jun 29 2009

Keywords

Examples

			G.f. = 1 - x - x^2 + x^3 - x^4 + x^5 + x^6 - x^7 + x^8 - x^9 - x^10 + x^11 + ...
		

Crossrefs

Cf. A143431.

Programs

  • Magma
    m:=100; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x)*(1-x^2)/(1+x^4))); // G. C. Greubel, Sep 21 2018
  • Mathematica
    CoefficientList[Series[(1-x)*(1-x^2)/(1+x^4), {x, 0, 100}], x] (* G. C. Greubel, Sep 21 2018 *)
    PadRight[{},120,{1,-1,-1,1,-1,1,1,-1}] (* or *) LinearRecurrence[{0,0,0,-1},{1,-1,-1,1},120] (* Harvey P. Dale, May 27 2023 *)
  • PARI
    a(n) = (-1)^(n + (n+2)\4)
    

Formula

Euler transform of length 8 sequence [ -1, -1, 0, -1, 0, 0, 0, 1].
a(3 - n) = a(n). a(n + 4) = - a(n).
G.f.: (1 - x) * (1 - x^2) / (1 + x^4).
G.f.: 1 / (1 + x / (1 - 2*x / (1 + x / (1 + x / (1 + x^2 / (1 - x)))))). - Michael Somos, May 12 2012
G.f. A(x) = 1 - x / (1 - x / (1 + 2*x / (1 - x^3 / (1 - x / (1 + x / (1 - x)))))). - Michael Somos, Jan 03 2013
a(n) = A143431(n + 2).
Showing 1-3 of 3 results.