A143461
Square array A(n,k) of numbers of length n quaternary words with at least k 0-digits between any other digits (n,k >= 0), read by antidiagonals.
Original entry on oeis.org
1, 1, 4, 1, 4, 16, 1, 4, 7, 64, 1, 4, 7, 19, 256, 1, 4, 7, 10, 40, 1024, 1, 4, 7, 10, 22, 97, 4096, 1, 4, 7, 10, 13, 43, 217, 16384, 1, 4, 7, 10, 13, 25, 73, 508, 65536, 1, 4, 7, 10, 13, 16, 46, 139, 1159, 262144, 1, 4, 7, 10, 13, 16, 28, 76, 268, 2683, 1048576, 1, 4, 7, 10, 13, 16, 19, 49, 115, 487, 6160, 4194304
Offset: 0
A (3,1) = 19, because 19 quaternary words of length 3 have at least 1 0-digit between any other digits: 000, 001, 002, 003, 010, 020, 030, 100, 101, 102, 103, 200, 201, 202, 203, 300, 301, 301, 303.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
4, 4, 4, 4, 4, 4, 4, 4, ...
16, 7, 7, 7, 7, 7, 7, 7, ...
64, 19, 10, 10, 10, 10, 10, 10, ...
256, 40, 22, 13, 13, 13, 13, 13, ...
1024, 97, 43, 25, 16, 16, 16, 16, ...
4096, 217, 73, 46, 28, 19, 19, 19, ...
16384, 508, 139, 76, 49, 31, 22, 22, ...
-
A:= proc(n, k) option remember; if k=0 then 4^n elif n<=k+1 then 3*n+1 else A(n-1, k) +3*A(n-k-1, k) fi end: seq(seq(A(n, d-n), n=0..d), d=0..13);
-
a[n_, 0] := 4^n; a[n_, k_] /; n <= k+1 := 3*n+1; a[n_, k_] := a[n, k] = a[n-1, k] + 3*a[n-k-1, k]; Table[a[n-k, k], {n, 0, 13}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jan 15 2014, after Maple *)
A318774
Coefficients in expansion of 1/(1 - x - 3*x^4).
Original entry on oeis.org
1, 1, 1, 1, 4, 7, 10, 13, 25, 46, 76, 115, 190, 328, 556, 901, 1471, 2455, 4123, 6826, 11239, 18604, 30973, 51451, 85168, 140980, 233899, 388252, 643756, 1066696, 1768393, 2933149, 4864417, 8064505, 13369684, 22169131, 36762382, 60955897, 101064949, 167572342, 277859488, 460727179, 763922026, 1266639052
Offset: 0
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3.
Essentially a duplicate of
A143454.
-
[n le 4 select 1 else Self(n-1) +3*Self(n-4): n in [1..51]]; // G. C. Greubel, May 08 2021
-
CoefficientList[Series[1/(1-x-3x^4), {x, 0, 50}], x]
a[n_]:= a[n]= If[n<4, 1, a[n-1] + 3*a[n-4]]; Table[a[n], {n,0,50}]
LinearRecurrence[{1,0,0,3}, {1,1,1,1}, 51]
-
my(p=Mod('x,x^4-'x^3-3)); a(n) = vecsum(Vec(lift(p^n))); \\ Kevin Ryde, May 11 2021
-
def a(n): return 1 if (n<4) else a(n-1) + 3*a(n-4)
[a(n) for n in (0..50)] # G. C. Greubel, May 08 2021
A172369
Triangle read by rows: T(n,k,q) = round(c(n)/(c(k)*c(n-k))) where c are partial products of a sequence defined in comments.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 1, 1, 7, 28, 28, 28, 7, 1, 1, 10, 70, 280, 280, 70, 10, 1, 1, 13, 130, 910, 3640, 910, 130, 13, 1, 1, 25, 325, 3250, 22750, 22750, 3250, 325, 25, 1, 1, 46, 1150, 14950, 149500, 261625, 149500, 14950, 1150, 46, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 1, 1;
1, 1, 1, 1;
1, 1, 1, 1, 1;
1, 4, 4, 4, 4, 1;
1, 7, 28, 28, 28, 7, 1;
1, 10, 70, 280, 280, 70, 10, 1;
1, 13, 130, 910, 3640, 910, 130, 13, 1;
1, 25, 325, 3250, 22750, 22750, 3250, 325, 25, 1;
1, 46, 1150, 14950, 149500, 261625, 149500, 14950, 1150, 46, 1;
-
f[n_, q_]:= f[n, q]= If[n==0, 0, If[n<4, 1, f[n-1, q] +q*f[n-4, q]]];
c[n_, q_]:= Product[f[j, q], {j,n}];
T[n_, k_, q_]:= Round[c[n, q]/(c[k, q]*c[n - k, q])];
Table[T[n, k, 3], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, May 08 2021 *)
-
@CachedFunction
def f(n,q): return 0 if (n==0) else 1 if (n<4) else f(n-1, q) + q*f(n-4, q)
def c(n,q): return product( f(j,q) for j in (1..n) )
def T(n,k,q): return round(c(n, q)/(c(k, q)*c(n-k, q)))
flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 08 2021
Definition corrected to give integral terms,
G. C. Greubel, May 08 2021
A193516
T(n,k) = number of ways to place any number of 4X1 tiles of k distinguishable colors into an nX1 grid.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 5, 4, 1, 1, 1, 5, 7, 7, 5, 1, 1, 1, 6, 9, 10, 9, 7, 1, 1, 1, 7, 11, 13, 13, 15, 10, 1, 1, 1, 8, 13, 16, 17, 25, 25, 14, 1, 1, 1, 9, 15, 19, 21, 37, 46, 39, 19, 1, 1, 1, 10, 17, 22, 25, 51, 73, 76, 57, 26, 1, 1, 1, 11, 19, 25, 29, 67, 106, 125
Offset: 1
Some solutions for n=9 k=3; colors=1, 2, 3; empty=0
..0....3....0....0....3....3....0....0....0....0....2....2....0....0....1....2
..1....3....0....2....3....3....3....0....0....0....2....2....1....0....1....2
..1....3....0....2....3....3....3....2....0....0....2....2....1....0....1....2
..1....3....3....2....3....3....3....2....1....0....2....2....1....0....1....2
..1....0....3....2....0....3....3....2....1....0....2....0....1....0....0....0
..2....3....3....2....0....3....3....2....1....3....2....2....0....0....0....3
..2....3....3....2....0....3....3....0....1....3....2....2....0....0....0....3
..2....3....0....2....0....3....3....0....0....3....2....2....0....0....0....3
..2....3....0....2....0....0....3....0....0....3....0....2....0....0....0....3
-
T:= proc(n, k) option remember;
`if`(n<0, 0,
`if`(n<4 or k=0, 1, k*T(n-4, k) +T(n-1, k)))
end:
seq(seq(T(n, d+1-n), n=1..d), d=1..13); # Alois P. Heinz, Jul 29 2011
-
T[n_, k_] := T[n, k] = If[n < 0, 0, If[n < 4 || k == 0, 1, k*T[n-4, k]+T[n-1, k]]]; Table[Table[T[n, d+1-n], {n, 1, d}], {d, 1, 13}] // Flatten (* Jean-François Alcover, Mar 04 2014, after Alois P. Heinz *)
Showing 1-4 of 4 results.
Comments