cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143463 Number of multiple hierarchies for n labeled elements.

Original entry on oeis.org

1, 4, 20, 133, 1047, 9754, 103203, 1229330, 16198452, 234110702, 3675679471, 62287376870, 1132138152251, 21963847972941, 452786198062541, 9881445268293457, 227522503290656371, 5510876754647261442, 140040543831299600637, 3724688873146823853387
Offset: 1

Views

Author

Thomas Wieder, Aug 17 2008

Keywords

Comments

The n labeled elements 1,2,3,...,n can be distributed in A005651(n) ways onto the levels of a single hierarchy. For the present sequence we distributed the n elements onto 1 up to n separate hierarchies. a(n) gives the number of such separate hierarchies for given n.
A hierarchy is a distribution of elements onto levels. Within a hierarchy the occupation number of level l_j is <= the occupation numbers of the levels l_i with i < j. Let the colon ":" separate two levels l_i and l_(j=i+1). Then we may have 1,2,3:4,5, but 1,2:3,4,5 is forbidden since the higher level has a greater occupation number. On the other hand, for a hierarchical ordering the second configuration is allowed.
The present sequence is the Exp transform of A005651.
The present sequence is related to A075729 which gives the number of separated hierarchical orderings. A034691 gives the number of separated hierarchical orderings for unlabeled elements. Thus we have
Hierarchies on elements:
........ unlabeled labeled
multiple A001970 A143463
Hierarchical orderings on elements:
........ unlabeled labeled
multiple A034691 A075729

Examples

			Let "|" separate two hierarchies. Then we have
n=1 gives 1 arrangement:
1
n=2 gives 4 arrangements:
1,2 1:2 2:1 1|2
n=3 gives 20 arrangements:
1,2,3 1,2:3 1:2:3 1,2|3 1:2|3 1|2|3
1,3:2 3:1:2 1,3|2 1:3|2
2,3:1 2:3:1 2,3|1 2:3|1
1:3:2 2:1|3
2:1:3 3:1|2
3:2:1 3:2|1
		

Crossrefs

There is a similar formula for A075729. - Thomas Wieder, Sep 09 2008

Programs

  • Maple
    A143463:=proc(n::integer)
    # Begonnen am: 14.08.2008
    # Letzte Aenderung: 14.08.2008
    # Subroutines required: ListeMengenzerlegungenAuf, A005651.
    local iverbose, Liste, Zerlegungen, Zerlegung, Produkt, Summe, Untermenge, ZahlElemente;
    iverbose:=0;
    Liste:=[seq( i, i=1..n )];
    Zerlegungen:=ListeMengenzerlegungenAuf(Liste);
    Summe:=0;
    if iverbose=1 then
    print("Zerlegungen: ",Zerlegungen);
    end if;
    for Zerlegung in Zerlegungen do
    Produkt:=1;
    if iverbose=1 then
    print("Zerlegung: ",Zerlegung);
    end if;
    # Eine Zerlegung besteht aus Untermengen.
    for Untermenge in Zerlegung do
    ZahlElemente:=nops(Untermenge);
    Produkt:=Produkt*A005651(ZahlElemente);
    if iverbose=1 then
    print("Untermenge: ",Untermenge,"A005651(ZahlElemente)",A005651(ZahlElemente));
    end if;
    # Ende der Schleife in der Zerlegung.
    od;
    Summe:=Summe+Produkt;
    # Ende der Schleife ueber die Zerlegungen.
    od;
    print("Resultat:",Summe);
    end proc;
    A143463 := proc(n::integer) local k,A005651,Resultat; A005651:=array(1..20): A005651[1]:=1: A005651[2]:=3: A005651[3]:=10: A005651[4]:=47: A005651[5]:=246: A005651[6]:=1602: A005651[7]:=11481: A005651[8]:=95503: A005651[9]:=871030: A005651[10]:=8879558: A005651[11]:=98329551: A005651[12]:=1191578522: A005651[13]:=15543026747: A005651[14]:=218668538441: A005651[15]:=3285749117475: A005651[16]:=52700813279423: A005651[17]:=896697825211142: A005651[18]:=16160442591627990: A005651[19]:=307183340680888755: A005651[20]:=6147451460222703502: if n = 0 then Resultat:=1: RETURN(Resultat); end if; Resultat:=0: for k from 1 to n do Resultat:=Resultat+(A143463(n-k)*A005651[k])/((n-k)!*(k-1)!): od; Resultat:=Resultat*(n-1)!; RETURN(Resultat); end proc; [From Thomas Wieder, Sep 09 2008]
    # second Maple program:
    with(numtheory):
    b:= proc(k) option remember; add(d/d!^(k/d), d=divisors(k)) end:
    c:= proc(n) option remember; `if`(n=0, 1,
          add((n-1)!/ (n-k)!* b(k) * c(n-k), k=1..n))
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
           c(n) +add(binomial(n-1, k-1) *c(k) *a(n-k), k=1..n-1))
        end:
    seq(a(n), n=1..25);  # Alois P. Heinz, Oct 10 2008
  • Mathematica
    nmax=20; Rest[CoefficientList[Series[Exp[Product[1/(1-x^k/k!),{k,1,nmax}]-1],{x,0,nmax}],x] * Range[0,nmax]!] (* Vaclav Kotesovec, May 11 2015 *)

Formula

Consider the set partitions of the n-set {1,2,...,n}. As usual, Bell(n) denotes the Bell numbers. The i-th set partition SP(i)={U(1),...,U(Z(i))} consists of Z(i) subsets U(j) with j=1,2,...,Z(i). |U(j)| is the number of elements in U(j). Then a(n) = Sum_{i=1..Bell(n)} Product_{j=1..Z(i)} A005651(|U(j)|). E.g.f.: series((1/exp(1))*exp(mul(1/(1-x^k/k!), k=1..12)), x=0,12);
a(n) = (n-1)! * Sum_{k=1..n} (a(n-k) A005651(k))/((n-k)! (k-1)!). - Thomas Wieder, Sep 09 2008
a(n) = Sum_{k=1..n} binomial(n-1,k-1)*A005651(k)*a(n-k) and a(0)=1. - Thomas Wieder, Sep 12 2008

Extensions

Partially edited by N. J. A. Sloane, Aug 24 2008
More terms from Alois P. Heinz, Oct 10 2008