A143463 Number of multiple hierarchies for n labeled elements.
1, 4, 20, 133, 1047, 9754, 103203, 1229330, 16198452, 234110702, 3675679471, 62287376870, 1132138152251, 21963847972941, 452786198062541, 9881445268293457, 227522503290656371, 5510876754647261442, 140040543831299600637, 3724688873146823853387
Offset: 1
Keywords
Examples
Let "|" separate two hierarchies. Then we have n=1 gives 1 arrangement: 1 n=2 gives 4 arrangements: 1,2 1:2 2:1 1|2 n=3 gives 20 arrangements: 1,2,3 1,2:3 1:2:3 1,2|3 1:2|3 1|2|3 1,3:2 3:1:2 1,3|2 1:3|2 2,3:1 2:3:1 2,3|1 2:3|1 1:3:2 2:1|3 2:1:3 3:1|2 3:2:1 3:2|1
Links
- Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 1..430 (first 200 terms from Alois P. Heinz)
- N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, arXiv:math/0307064 [math.CO], 2003; Order 21 (2004), 83-89.
- Thomas Wieder, The number of certain rankings and hierarchies formed from labeled or unlabeled elements and sets, Applied Mathematical Sciences, vol. 3, 2009, no. 55, 2707 - 2724. [From _Thomas Wieder_, Nov 14 2009]
Crossrefs
Programs
-
Maple
A143463:=proc(n::integer) # Begonnen am: 14.08.2008 # Letzte Aenderung: 14.08.2008 # Subroutines required: ListeMengenzerlegungenAuf, A005651. local iverbose, Liste, Zerlegungen, Zerlegung, Produkt, Summe, Untermenge, ZahlElemente; iverbose:=0; Liste:=[seq( i, i=1..n )]; Zerlegungen:=ListeMengenzerlegungenAuf(Liste); Summe:=0; if iverbose=1 then print("Zerlegungen: ",Zerlegungen); end if; for Zerlegung in Zerlegungen do Produkt:=1; if iverbose=1 then print("Zerlegung: ",Zerlegung); end if; # Eine Zerlegung besteht aus Untermengen. for Untermenge in Zerlegung do ZahlElemente:=nops(Untermenge); Produkt:=Produkt*A005651(ZahlElemente); if iverbose=1 then print("Untermenge: ",Untermenge,"A005651(ZahlElemente)",A005651(ZahlElemente)); end if; # Ende der Schleife in der Zerlegung. od; Summe:=Summe+Produkt; # Ende der Schleife ueber die Zerlegungen. od; print("Resultat:",Summe); end proc; A143463 := proc(n::integer) local k,A005651,Resultat; A005651:=array(1..20): A005651[1]:=1: A005651[2]:=3: A005651[3]:=10: A005651[4]:=47: A005651[5]:=246: A005651[6]:=1602: A005651[7]:=11481: A005651[8]:=95503: A005651[9]:=871030: A005651[10]:=8879558: A005651[11]:=98329551: A005651[12]:=1191578522: A005651[13]:=15543026747: A005651[14]:=218668538441: A005651[15]:=3285749117475: A005651[16]:=52700813279423: A005651[17]:=896697825211142: A005651[18]:=16160442591627990: A005651[19]:=307183340680888755: A005651[20]:=6147451460222703502: if n = 0 then Resultat:=1: RETURN(Resultat); end if; Resultat:=0: for k from 1 to n do Resultat:=Resultat+(A143463(n-k)*A005651[k])/((n-k)!*(k-1)!): od; Resultat:=Resultat*(n-1)!; RETURN(Resultat); end proc; [From Thomas Wieder, Sep 09 2008] # second Maple program: with(numtheory): b:= proc(k) option remember; add(d/d!^(k/d), d=divisors(k)) end: c:= proc(n) option remember; `if`(n=0, 1, add((n-1)!/ (n-k)!* b(k) * c(n-k), k=1..n)) end: a:= proc(n) option remember; `if`(n=0, 1, c(n) +add(binomial(n-1, k-1) *c(k) *a(n-k), k=1..n-1)) end: seq(a(n), n=1..25); # Alois P. Heinz, Oct 10 2008
-
Mathematica
nmax=20; Rest[CoefficientList[Series[Exp[Product[1/(1-x^k/k!),{k,1,nmax}]-1],{x,0,nmax}],x] * Range[0,nmax]!] (* Vaclav Kotesovec, May 11 2015 *)
Formula
Consider the set partitions of the n-set {1,2,...,n}. As usual, Bell(n) denotes the Bell numbers. The i-th set partition SP(i)={U(1),...,U(Z(i))} consists of Z(i) subsets U(j) with j=1,2,...,Z(i). |U(j)| is the number of elements in U(j). Then a(n) = Sum_{i=1..Bell(n)} Product_{j=1..Z(i)} A005651(|U(j)|). E.g.f.: series((1/exp(1))*exp(mul(1/(1-x^k/k!), k=1..12)), x=0,12);
a(n) = (n-1)! * Sum_{k=1..n} (a(n-k) A005651(k))/((n-k)! (k-1)!). - Thomas Wieder, Sep 09 2008
a(n) = Sum_{k=1..n} binomial(n-1,k-1)*A005651(k)*a(n-k) and a(0)=1. - Thomas Wieder, Sep 12 2008
Extensions
Partially edited by N. J. A. Sloane, Aug 24 2008
More terms from Alois P. Heinz, Oct 10 2008
Comments