cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A144792 EXP transform of A140585.

Original entry on oeis.org

1, 1, 5, 33, 282, 2938, 36029, 507440, 8058990, 142315830, 2763775025, 58498072273, 1339545500214, 32980132065364, 868417100538399, 24344702489881998, 723694354351500431, 22733368105181643193, 752291980101845144878, 26153153055424960528533
Offset: 0

Views

Author

Thomas Wieder, Sep 21 2008

Keywords

Comments

Stirling transform of A143463.

Crossrefs

Programs

  • Maple
    with(numtheory): with(combinat): b:= proc(k) option remember; add(d/d!^(k/d), d=divisors(k)) end: c:= proc(n) option remember; `if`(n=0, 1, add((n-1)!/(n-k)!* b(k)* c(n-k), k=1..n)) end: aa:= n-> add(stirling2(n, k) *c(k), k=1..n): a:= proc(n) option remember; `if`(n=0, 1, aa(n)+ add(binomial(n-1, k-1) *aa(k) *a(n-k), k=1..n-1)) end: seq(a(n), n=1..20); # Alois P. Heinz, Oct 10 2008
  • Mathematica
    b[k_] := b[k] = DivisorSum[k, #/#!^(k/#)&]; c[n_] := c[n] = If[n==0, 1, Sum[(n-1)!/(n-k)!*b[k]*c[n-k], {k, 1, n}]]; aa[n_] := Sum[StirlingS2[n, k]*c[k], {k, 1, n}]; a[n_] := a[n] = If[n==0, 1, aa[n] + Sum[Binomial[ n-1, k-1]*aa[k]*a[n-k], {k, 1, n-1}]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 25 2017, after Alois P. Heinz *)

Formula

E.g.f: (1/exp(1)) exp( 1 / prod_{k=1}^{inf} (1 - (exp(x)-1)^k / k!) ).
a(n) = sum_{k=1..n} C(n-1,k-1) A140585(k) a(n-k).
With S2(n,k) as the Stirling number of the second kind we have
a(n) = sum_{k=1..n} A143463(n) S2(n,k).

Extensions

More terms from Alois P. Heinz, Oct 10 2008

A308337 Expansion of e.g.f. exp(-1 + Product_{k>=1} 1/(1 - x^k/k)).

Original entry on oeis.org

1, 1, 4, 21, 146, 1210, 11894, 133000, 1677668, 23439684, 359651232, 6000427884, 108157599120, 2092493844480, 43240336406136, 950021322002904, 22108068716440272, 543048769028068944, 14037848562783308160, 380851191359082217488, 10818262594065294568416
Offset: 0

Views

Author

Ilya Gutkovskiy, May 20 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[Product[1/(1 - x^k/k), {k, 1, nmax}] - 1], {x, 0, nmax}], x] Range[0, nmax]!

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1)*A007841(k)*a(n-k).

A308336 Expansion of e.g.f. exp(-1 + Product_{k>=1} (1 + x^k/k!)).

Original entry on oeis.org

1, 1, 2, 8, 31, 147, 884, 5567, 39176, 311400, 2644490, 24206327, 239684768, 2519262527, 28077597357, 331892965533, 4130002336563, 53944450834303, 738940309779760, 10577568411051305, 157846971489443335, 2452481386778640564, 39589449956634478543
Offset: 0

Views

Author

Ilya Gutkovskiy, May 20 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[Exp[Product[(1 + x^k/k!), {k, 1, nmax}] - 1], {x, 0, nmax}], x] Range[0, nmax]!

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1)*A007837(k)*a(n-k).
Showing 1-3 of 3 results.