A384581
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A143501.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 4, 0, 1, 4, 6, 10, 16, 0, 1, 5, 10, 19, 41, 92, 0, 1, 6, 15, 32, 78, 224, 616, 0, 1, 7, 21, 50, 131, 411, 1464, 4729, 0, 1, 8, 28, 74, 205, 672, 2617, 11002, 40776, 0, 1, 9, 36, 105, 306, 1031, 4170, 19251, 93234, 388057, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 1, 3, 6, 10, 15, 21, ...
0, 4, 10, 19, 32, 50, 74, ...
0, 16, 41, 78, 131, 205, 306, ...
0, 92, 224, 411, 672, 1031, 1518, ...
0, 616, 1464, 2617, 4170, 6245, 8997, ...
-
a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(3*n-3*j+k, j)/(3*n-3*j+k)*a(n-j, j)));
A143500
G.f. A(x) satisfies A(x) = 1 + x*A(x*A(x)^2).
Original entry on oeis.org
1, 1, 1, 3, 10, 46, 244, 1481, 10020, 74400, 599573, 5200284, 48223360, 475557054, 4965035754, 54672110310, 632853655686, 7678552433184, 97404631390960, 1288861146261679, 17752479062092470, 254051633672160696, 3770953046565933003, 57964955567444706668
Offset: 0
G.f. A(x) = 1 + x + x^2 + 3*x^3 + 10*x^4 + 46*x^5 + 244*x^6 +...
A(x)^2 = 1 + 2*x + 3*x^2 + 8*x^3 + 27*x^4 + 118*x^5 + 609*x^6 +...
A(x*A(x)^2) = 1 + x + 3*x^2 + 10*x^3 + 46*x^4 + 244*x^5 +...
If G(x*A(x)^2) = x then
G(x) = x - 2*x^2 + 5*x^3 - 18*x^4 + 68*x^5 - 300*x^6 + 1283*x^7 -+...
A(G(x)) = 1 + A(x)*G(x) = (x/G(x))^(1/2) where
A(x)*G(x) = x - x^2 + 4*x^3 - 12*x^4 + 59*x^5 - 209*x^6 + 1199*x^7 -...
-
{a(n)=local(A=1+x+x*O(x^n));for(i=0,n,A=1+x*subst(A,x,x*A^2));polcoeff(A,n)}
-
a(n, k=1) = if(k==0, 0^n, k*sum(j=0, n, binomial(2*n-2*j+k, j)/(2*n-2*j+k)*a(n-j, j))); \\ Seiichi Manyama, Jun 04 2025
A212029
G.f. A(x) satisfies A(x) = 1 + x*A(x*A(x)^3)^3.
Original entry on oeis.org
1, 1, 3, 21, 190, 2112, 26922, 382110, 5920788, 98862273, 1762572957, 33325846461, 664774457583, 13932829786025, 305788481726799, 7008171327166869, 167321925537782445, 4153009604547937170, 106963758805117459392, 2854029374011293902121, 78773444214057182702790
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 21*x^3 + 190*x^4 + 2112*x^5 + 26922*x^6 +...
Related expansions:
A(x)^3 = 1 + 3*x + 12*x^2 + 82*x^3 + 732*x^4 + 7944*x^5 + 99156*x^6 +..
A(x*A(x)^3) = 1 + x + 6*x^2 + 51*x^3 + 560*x^4 + 7155*x^5 + 102495*x^6 +...
A(x*A(x)^3)^3 = 1 + 3*x + 21*x^2 + 190*x^3 + 2112*x^4 + 26922*x^5 +...
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1+x*subst(A^3, x, x*A^3)); polcoeff(A, n)}
for(n=0,30,print1(a(n),", "))
-
a(n, k=1) = if(k==0, 0^n, k*sum(j=0, n, binomial(3*n-3*j+k, j)/(3*n-3*j+k)*a(n-j, 3*j))); \\ Seiichi Manyama, Mar 01 2025
A143508
G.f. A(x) satisfies A(x) = 1 + x*A(x*A(x)^2)^2.
Original entry on oeis.org
1, 1, 2, 9, 52, 372, 3058, 28074, 282028, 3059328, 35497672, 437499541, 5696752234, 78036803430, 1120687989348, 16823652188164, 263345788211608, 4289062071449610, 72543038644585822, 1271980596430351862, 23085579883157411532, 433071407705851089244
Offset: 0
G.f. A(x) = 1 + x + 2*x^2 + 9*x^3 + 52*x^4 + 372*x^5 + 3058*x^6 +...
A(x)^2 = 1 + 2*x + 5*x^2 + 22*x^3 + 126*x^4 + 884*x^5 + 7149*x^6 +...
A(x*A(x)^2) = 1 + x + 4*x^2 + 22*x^3 + 156*x^4 + 1285*x^5 + 11886*x^6 +...
A(x*A(x)^2)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 372*x^4 + 3058*x^5 +...
Define G(x) by G(x*A(x)^2) = x, then
G(x) = x - 2*x^2 + 3*x^3 - 12*x^4 + 17*x^5 - 198*x^6 - 345*x^7 +...
such that G(x) = x/(1 + A(x)^2*G(x))^2.
-
{a(n)=local(A=1+x+x*O(x^n));for(i=0,n,A=1+x*subst(A^2,x,x*A^2));polcoeff(A,n)}
-
a(n, k=1) = if(k==0, 0^n, k*sum(j=0, n, binomial(2*n-2*j+k, j)/(2*n-2*j+k)*a(n-j, 2*j))); \\ Seiichi Manyama, Mar 01 2025
A384574
G.f. A(x) satisfies A(x) = 1 + x * A(x*A(x)^4).
Original entry on oeis.org
1, 1, 1, 5, 23, 155, 1236, 11286, 116333, 1329433, 16630343, 225606826, 3294976854, 51496560764, 856858516809, 15112857079891, 281479726839851, 5517842789917283, 113510479973132860, 2444032094604379100, 54948814775692303024, 1287258966133883349701
Offset: 0
-
a(n, k=1) = if(k==0, 0^n, k*sum(j=0, n, binomial(4*n-4*j+k, j)/(4*n-4*j+k)*a(n-j, j)));
A384575
G.f. A(x) satisfies A(x) = 1 + x * A(x*A(x)^5).
Original entry on oeis.org
1, 1, 1, 6, 31, 236, 2166, 22722, 269889, 3567412, 51765431, 816476196, 13892821878, 253442895075, 4930644856063, 101830536332051, 2223767436058566, 51172807259226084, 1237092039069090235, 31332521053777095784, 829389782837272248191, 22894754438382163120136
Offset: 0
-
a(n, k=1) = if(k==0, 0^n, k*sum(j=0, n, binomial(5*n-5*j+k, j)/(5*n-5*j+k)*a(n-j, j)));
A212028
G.f. satisfies: A(x) = 1 + x*A(x*A(x)^3)^2.
Original entry on oeis.org
1, 1, 2, 11, 74, 635, 6296, 70268, 864106, 11546531, 165996792, 2548556963, 41546769324, 715850868468, 12986529841038, 247255748839532, 4926870211273246, 102495266879754087, 2221254395951869988, 50049980203162990978, 1170440788530570387644
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 11*x^3 + 74*x^4 + 635*x^5 + 6296*x^6 +...
Related expansions:
A(x)^2 = 1 + 2*x + 5*x^2 + 26*x^3 + 174*x^4 + 1462*x^5 + 14279*x^6 +...
A(x)^3 = 1 + 3*x + 9*x^2 + 46*x^3 + 306*x^4 + 2526*x^5 + 24311*x^6 +...
A(x*A(x)^3) = 1 + x + 5*x^2 + 32*x^3 + 273*x^4 + 2715*x^5 + 30542*x^6 + 379200*x^7 + 5117211*x^8 + 74266646*x^9 + 1150267802*x^10 +...
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1+x*subst(A^3, x, x*A^3)); polcoeff(A, n)}
for(n=0,30,print1(a(n),", "))
A384680
G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x)*A(x*A(x)^3) ).
Original entry on oeis.org
1, 1, 3, 15, 100, 805, 7442, 76750, 866818, 10586499, 138549918, 1929878820, 28459172110, 442421488758, 7225177328165, 123586748434192, 2208493015533530, 41138303109509415, 797178212982793708, 16041390159326400966, 334654194086236031816, 7227174934846895031544
Offset: 0
-
terms = 22; A[] = 0; Do[A[x] = 1/(1-x*A[x]*A[x*A[x]^3]) + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Jun 07 2025 *)
-
a(n, k=1) = if(k==0, 0^n, k*sum(j=0, n, binomial(3*n-j+k, j)/(3*n-j+k)*a(n-j, j)));
A212030
G.f. satisfies: A(x) = 1 + x*A(x*A(x)^2)^3.
Original entry on oeis.org
1, 1, 3, 18, 142, 1350, 14607, 174626, 2263749, 31426878, 463144150, 7199095692, 117452998632, 2003613768328, 35628141598164, 658723330672311, 12636278430184303, 251042922016657782, 5156985005918404047, 109382326645948764003, 2392477607054828471286
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 18*x^3 + 142*x^4 + 1350*x^5 + 14607*x^6 +...
Related expansions:
A(x)^2 = 1 + 2*x + 7*x^2 + 42*x^3 + 329*x^4 + 3092*x^5 + 33090*x^6 +...
A(x)^3 = 1 + 3*x + 12*x^2 + 73*x^3 + 570*x^4 + 5307*x^5 + 56226*x^6 +...
A(x*A(x)^2) = 1 + x + 5*x^2 + 37*x^3 + 346*x^4 + 3745*x^5 + 45132*x^6 +...
A(x*A(x)^2)^3 = 1 + 3*x + 18*x^2 + 142*x^3 + 1350*x^4 + 14607*x^5 +...
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1+x*subst(A^3, x, x*A^2)); polcoeff(A, n)}
for(n=0,30,print1(a(n),", "))
A384577
G.f. A(x) satisfies A(x) = ( 1 + x * A(x*A(x))^(1/3) )^3.
Original entry on oeis.org
1, 3, 6, 19, 78, 411, 2617, 19251, 160254, 1482400, 15035622, 165545253, 1963006576, 24908182305, 336397711074, 4813816122917, 72704962269990, 1155070280657286, 19245587072017468, 335418172582313610, 6100293082529588802, 115532044092709366555, 2274095852526512246841
Offset: 0
-
a(n, k=3) = if(k==0, 0^n, k*sum(j=0, n, binomial(3*n-3*j+k, j)/(3*n-3*j+k)*a(n-j, j)));
Showing 1-10 of 10 results.