A143505 Triangle of coefficients of the polynomials x^(n - 1)*A(n,x + 1/x), where A(n,x) are the Eulerian polynomials of A008292.
1, 1, 1, 1, 1, 4, 3, 4, 1, 1, 11, 14, 23, 14, 11, 1, 1, 26, 70, 104, 139, 104, 70, 26, 1, 1, 57, 307, 530, 973, 947, 973, 530, 307, 57, 1, 1, 120, 1197, 3016, 5970, 8568, 9549, 8568, 5970, 3016, 1197, 120, 1, 1, 247, 4300, 17101, 37105, 70474, 90069, 107241, 90069
Offset: 1
Examples
Triangle begins: 1; 1, 1, 1; 1, 4, 3, 4, 1; 1, 11, 14, 23, 14, 11, 1; 1, 26, 70, 104, 139, 104, 70, 26, 1; 1, 57, 307, 530, 973, 947, 973, 530, 307, 57, 1; ... reformatted. - _Franck Maminirina Ramaharo_, Oct 25 2018
Links
- Eric Weisstein's World of Mathematics, Polylogarithm
Programs
-
Mathematica
Table[CoefficientList[FullSimplify[ExpandAll[(1 - x - 1/x)^(n + 1)*x^(n - 1)*PolyLog[-n, x + 1/x]/(x + 1/x)]], x], {n, 1, 10}]//Flatten
Formula
Row n is generated by the polynomial (1 - x - 1/x)^(n + 1)*x^(n - 1)*Li(-n, x + 1/x)/(x + 1/x), where Li(n, z) is the polylogarithm function.
E.g.f.: (exp(x*y) - exp((1 + x^2)*y))/(x*exp((1 + x^2)*y) - (1 + x^2)*exp(x*y)). - Franck Maminirina Ramaharo, Oct 25 2018
Extensions
Edited and new name by Franck Maminirina Ramaharo, Oct 25 2018
Comments