A143603 Triangle, read by rows, such that the g.f. of column k = G(x)^(2k+1) where G(x) = 1 + x*G(x)^3 is the g.f. of A001764 (ternary trees).
1, 1, 1, 3, 3, 1, 12, 12, 5, 1, 55, 55, 25, 7, 1, 273, 273, 130, 42, 9, 1, 1428, 1428, 700, 245, 63, 11, 1, 7752, 7752, 3876, 1428, 408, 88, 13, 1, 43263, 43263, 21945, 8379, 2565, 627, 117, 15, 1, 246675, 246675, 126500, 49588, 15939, 4235, 910, 150, 17, 1
Offset: 1
Examples
Triangle begins: 1; 1, 1; 3, 3, 1; 12, 12, 5, 1; 55, 55, 25, 7, 1; 273, 273, 130, 42, 9, 1; 1428, 1428, 700, 245, 63, 11, 1; 7752, 7752, 3876, 1428, 408, 88, 13, 1; ... where g.f. of column k = G(x)^(2k+1) where G(x) = 1 + x*G(x)^3. Matrix inverse begins: 1; -1, 1; 0, -3, 1; 0, 3, -5, 1; 0, -1, 10, -7, 1; 0, 0, -10, 21, -9, 1; 0, 0, 5, -35, 36, -11, 1; 0, 0, -1, 35, -84, 55, -13, 1; ... where g.f. of column k = (1-x)^(2k+1) for k>=0. From _Peter Bala_, Aug 07 2014: (Start) Matrix factorization as (1 + A110616)*A033184 begins /1 \/ 1 \ / 1 \ |0 1 || 1 1 | | 1 1 | |0 1 1 || 2 2 1 | = | 3 3 1 | |0 3 2 1 || 5 5 3 1 | |12 12 5 1 | |0 12 7 3 1 ||14 14 9 4 1 | |55 55 25 7 1 | (End)
Links
- Yuxuan Zhang and Yan Zhuang, A subfamily of skew Dyck paths related to k-ary trees, arXiv:2306.15778 [math.CO], 2023.
Programs
-
PARI
{T(n,k)=binomial(3*n-k,n-k)*(2*k+1)/(2*n+1)}
Formula
T(n,k) = C(3n-k,n-k)*(2k+1)/(2n+1) for 0<=k<=n.
Let M = the production matrix:
1, 1
2, 2, 1
3, 3, 2, 1
4, 4, 3, 2, 1
5, 5, 4, 3, 2, 1
...
Top row of M^(n-1) gives n-th row. - Gary W. Adamson, Jul 07 2011
Comments