cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143603 Triangle, read by rows, such that the g.f. of column k = G(x)^(2k+1) where G(x) = 1 + x*G(x)^3 is the g.f. of A001764 (ternary trees).

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 12, 12, 5, 1, 55, 55, 25, 7, 1, 273, 273, 130, 42, 9, 1, 1428, 1428, 700, 245, 63, 11, 1, 7752, 7752, 3876, 1428, 408, 88, 13, 1, 43263, 43263, 21945, 8379, 2565, 627, 117, 15, 1, 246675, 246675, 126500, 49588, 15939, 4235, 910, 150, 17, 1
Offset: 1

Views

Author

Paul D. Hanna, Aug 29 2008

Keywords

Comments

From Peter Bala, Aug 07 2014: (Start)
Riordan array (G(x), x*G(x)). Let C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + ... be the o.g.f. of the Catalan numbers A000108. Then C(x*G(x)) = G(x).
This leads to a factorization of this array in the group of Riordan matrices as (1, x*G(x))*(C(x), x*C(x)) = (1 + A110616)*A033184 (here, in the final product, 1 refers to the 1 X 1 identity matrix and + means direct sum - see the Example section). (End)

Examples

			Triangle begins:
1;
1, 1;
3, 3, 1;
12, 12, 5, 1;
55, 55, 25, 7, 1;
273, 273, 130, 42, 9, 1;
1428, 1428, 700, 245, 63, 11, 1;
7752, 7752, 3876, 1428, 408, 88, 13, 1; ...
where g.f. of column k = G(x)^(2k+1) where G(x) = 1 + x*G(x)^3.
Matrix inverse begins:
1;
-1, 1;
0, -3, 1;
0, 3, -5, 1;
0, -1, 10, -7, 1;
0, 0, -10, 21, -9, 1;
0, 0, 5, -35, 36, -11, 1;
0, 0, -1, 35, -84, 55, -13, 1; ...
where g.f. of column k = (1-x)^(2k+1) for k>=0.
From _Peter Bala_, Aug 07 2014: (Start)
Matrix factorization as (1 + A110616)*A033184 begins
/1           \/ 1         \    / 1           \
|0  1        || 1  1       |   | 1  1        |
|0  1 1      || 2  2 1     | = | 3  3  1     |
|0  3 2 1    || 5  5 3 1   |   |12 12  5 1   |
|0 12 7 3 1  ||14 14 9 4 1 |   |55 55 25 7 1 |
(End)
		

Crossrefs

Cf. columns: A001764, A102893, A102594; row sums: A006013. A033184, A110616.

Programs

  • PARI
    {T(n,k)=binomial(3*n-k,n-k)*(2*k+1)/(2*n+1)}

Formula

T(n,k) = C(3n-k,n-k)*(2k+1)/(2n+1) for 0<=k<=n.
Let M = the production matrix:
1, 1
2, 2, 1
3, 3, 2, 1
4, 4, 3, 2, 1
5, 5, 4, 3, 2, 1
...
Top row of M^(n-1) gives n-th row. - Gary W. Adamson, Jul 07 2011