A143628 Define E(n) = Sum_{k >= 0} (-1)^floor(k/3)*k^n/k! for n = 0,1,2,... . Then E(n) is an integral linear combination of E(0), E(1) and E(2). This sequence lists the coefficients of E(0).
1, 0, 0, -1, -6, -25, -89, -280, -700, -380, 13452, 149831, 1214852, 8700263, 57515640, 351296151, 1909757620, 8017484274, 5703377941, -428273438434, -7295220035921, -89868583754993, -970185398785810, -9657428906237364
Offset: 0
Examples
E(n) as linear combination of E(i), i = 0..2. ==================================== ..E(n)..|.....E(0).....E(1)....E(2). ==================================== ..E(3)..|......-1......-2........3.. ..E(4)..|......-6......-7........7.. ..E(5)..|.....-25.....-23.......14.. ..E(6)..|.....-89.....-80.......16.. ..E(7)..|....-280....-271......-77.. ..E(8)..|....-700....-750.....-922.. ..E(9)..|....-380....-647....-6660.. ..E(10).|...13452...13039...-41264.. ... a(5) = -25 because E(5) = -25*E(0) - 23*E(1) + 14*E(2). a(6) = -89 because E(6) = -89*E(0) - 80*E(1) + 16*E(2).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..578
- Eric Weisstein's World of Mathematics, Bell Polynomial.
Programs
-
Maple
# Compare with A143815 # M:=24: a:=array(0..100): b:=array(0..100): c:=array(0..100): a[0]:=1: b[0]:=0: c[0]:=0: for n from 1 to M do a[n]:= -add(binomial(n-1,k)*c[k], k=0..n-1); b[n]:= add(binomial(n-1,k)*a[k], k=0..n-1); c[n]:= add(binomial(n-1,k)*b[k], k=0..n-1); end do: A143628:=[seq(a[n], n=0..M)];
-
Mathematica
m = 23; a[0] = 1; b[0] = 0; c[0] = 0; For[n = 1, n <= m, n++, a[n] = -Sum[ Binomial[n-1, k]*c[k], {k, 0, n-1}]; b[n] = Sum[ Binomial[n-1, k]*a[k], {k, 0, n-1}]; c[n] = Sum[ Binomial[n-1, k]*b[k], {k, 0, n-1}]]; Table[a[n], {n, 0, m}] (* Jean-François Alcover, Mar 06 2013, after Maple *)
-
PARI
Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!); a(n) = my(w=(-1+sqrt(3)*I)/2); round(Bell_poly(n, -1)+Bell_poly(n, -w)+Bell_poly(n, -w^2))/3; \\ Seiichi Manyama, Oct 15 2022
Formula
Define three sequences A(n), B(n) and C(n) by the relations: A(n+1) = - Sum_{i = 0..n} binomial(n,i)*C(i), B(n+1) = Sum_{i = 0..n} binomial(n,i)*A(i), C(n+1) = Sum_{i = 0..n} binomial(n,i)*B(i), with initial conditions A(0) = 1, B(0) = C(0) = 0. Then a(n) = A(n). The other sequences are B(n) = A143630 and C(n) = A143629. Compare with A143815. Also a(n) = A143629(n) + A000587(n).
From Seiichi Manyama, Oct 15 2022: (Start)
a(n) = Sum_{k = 0..floor(n/3)} (-1)^k * Stirling2(n,3*k).
a(n) = ( Bell_n(-1) + Bell_n(-w) + Bell_n(-w^2) )/3, where Bell_n(x) is n-th Bell polynomial and w = exp(2*Pi*i/3). (End)
Comments