cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143680 a(n) = (prime(n)^3 - prime(n^3))/2.

Original entry on oeis.org

3, 4, 11, 16, 320, 438, 1302, 1594, 3324, 8235, 9417, 17950, 24759, 27349, 36252, 55002, 78861, 84711, 115866, 138056, 146440, 190374, 220857, 277626, 370572, 417629, 435933, 488096, 507799, 565157, 850338, 930999, 1072092, 1107343
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 01 2008

Keywords

Examples

			If n=1, then (prime(1)^3-prime(1^3))/2 = (8-2)/2 = 6/2 = 3 = a(1).
If n=2, then (prime(2)^3-prime(2^3))/2 = (27-19)/2 = 8/2 = 4 = a(2).
If n=3, then (prime(3)^3-prime(3^3))/2 = (125-103)/2 = 22/2 = 11 = a(3).
If n=4, then (prime(4)^3-prime(4^3))/2 = (343-311)/2 = 32/2 = 16 = a(4).
If n=5, then (prime(5)^3-prime(5^3))/2 = (1331-691)/2 = 640/2 = 320 = a(5), etc.
		

Crossrefs

Cf. A000040.
Cf. A030078, A055875. [R. J. Mathar, Nov 05 2008]

Programs

  • Magma
    [(NthPrime(n)^3 -NthPrime(n^3))/2: n in [1..40]]; // Vincenzo Librandi, Sep 15 2015
    
  • Maple
    A143680 := proc(n) option remember ; local p; (ithprime(n)^3-ithprime(n^3))/2 ; end: for n from 1 to 40 do printf("%d,",A143680(n)) ; od: # R. J. Mathar, Nov 05 2008
  • Mathematica
    Table[(Prime[n]^3 - Prime[n^3]) / 2, {n, 50}] (* Vincenzo Librandi, Sep 15 2015 *)
  • PARI
    a(n) = (prime(n)^3 -prime(n^3))/2; \\ Michel Marcus, Sep 15 2015
    
  • Sage
    [(nth_prime(n)^3 - nth_prime(n^3))/2 for n in (1..40)] # G. C. Greubel, May 29 2021

Extensions

More terms from R. J. Mathar, Nov 05 2008