cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143682 a(n) = (prime(n)^4 - prime(n^4))/2, where prime(n) is the n-th prime.

Original entry on oeis.org

7, 14, 103, 391, 5002, 8967, 31065, 45724, 107077, 301276, 382000, 820141, 1246909, 1479730, 2129740, 3534420, 5523879, 6237871, 9209731, 11625564, 12865129, 17844972, 21754756, 28999632, 41437737, 48684207, 52341667, 60941856
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 01 2008

Keywords

Examples

			a(1) = (prime(1)^2^2 - prime(1^2^2))/2 = (16 - 2)/2 = 14/2 = 7,
a(2) = (prime(2)^2^2 - prime(2^2^2))/2 = (81 - 53)/2 = 28/2 = 14,
a(3) = (prime(3)^2^2 - prime(3^2^2))/2 = (625 - 419)/2 = 206/2 = 103,
a(4) = (prime(4)^2^2 - prime(4^2^2))/2 = (2401 - 1619)/2 = 782/2 = 391 = a(4),
a(5) = (prime(5)^2^2 - prime(5^2^2))/2 = (14641 - 4637)/2 = 10004/2 = 5002,
etc.
		

Crossrefs

Cf. A000040.
Cf. A030514, A109791. - R. J. Mathar, Nov 05 2008

Programs

  • Magma
    [(NthPrime(n)^4 - NthPrime(n^4))/2: n in [1..30]]; // Vincenzo Librandi, Oct 05 2015
    
  • Maple
    A143682 := proc(n) (ithprime(n)^4-ithprime(n^4))/2 ; end: for n from 1 to 50 do printf("%d,",A143682(n)) ; od: # R. J. Mathar, Nov 05 2008
  • Mathematica
    Table[(Prime[n]^4 - Prime[n^4])/2, {n, 40}] (* G. C. Greubel, May 29 2021 *)
  • PARI
    a(n) = (prime(n)^4 - prime(n^4))/2; \\ Michel Marcus, Oct 05 2015
    
  • Sage
    [(nth_prime(n)^4 - nth_prime(n^4))/2 for n in (1..40)] # G. C. Greubel, May 29 2021

Extensions

More terms from R. J. Mathar, Nov 05 2008