A143697
Least square k^2 such that n^2-k^2 = p*q with p and q odd primes and p= 4.
1, 4, 1, 16, 9, 4, 9, 36, 1, 36, 9, 4, 9, 36, 1, 144, 9, 4, 81, 36, 25, 36, 9, 16, 81, 144, 1, 144, 81, 16, 9, 36, 25, 36, 81, 4, 9, 144, 1, 576, 9, 4, 225, 36, 25, 144, 9, 64, 81, 36, 49, 144, 9, 16, 225, 144, 1, 324, 81, 16, 9, 36, 25, 36, 225, 4, 9, 144, 1, 36, 225
Offset: 4
Keywords
Examples
4*4-1=3*5 p=3 q=5 5*5-4=3*7 p=3 q=7 6*6-1=5*7 p=5 q=7 7*7-16=3*11 p=3 q=11
Links
- Pierre CAMI, Table of n, a(n) for n = 4..60000
Programs
-
PARI
a(n) = {for (k=1, n-1, my(x=n^2-k^2); if ((omega(x)==2) && (bigomega(x)==2) && (x%2), return(k^2);););} \\ Michel Marcus, Sep 23 2019
Comments