A143698 12 times hexagonal numbers: 12*n*(2*n-1).
0, 12, 72, 180, 336, 540, 792, 1092, 1440, 1836, 2280, 2772, 3312, 3900, 4536, 5220, 5952, 6732, 7560, 8436, 9360, 10332, 11352, 12420, 13536, 14700, 15912, 17172, 18480, 19836, 21240, 22692, 24192, 25740, 27336, 28980, 30672, 32412
Offset: 0
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Maple
seq(12*n*(2*n-1), n=0..40); # G. C. Greubel, May 30 2021
-
Mathematica
Table[24n^2-12n,{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{0,12,72},40] (* Harvey P. Dale, Sep 24 2015 *)
-
PARI
a(n)=24*n^2-12*n \\ Charles R Greathouse IV, Jun 17 2017
-
Sage
[12*n*(2*n-1) for n in (0..40)] # G. C. Greubel, May 30 2021
Formula
a(n) = a(n-1) + 48*n - 36, with a(0)=0. - Vincenzo Librandi, Dec 14 2010
From G. C. Greubel, May 30 2021: (Start)
G.f.: 12*x*(1 + 3*x)/(1-x)^3.
E.g.f.: 12*x*(1 + 2*x)*exp(x). (End)
Comments