A143726 Middle members of beastly cousin prime triples: primes p such that both p+666 and p-666 are prime.
733, 773, 823, 857, 877, 947, 997, 1033, 1087, 1123, 1213, 1223, 1283, 1307, 1327, 1423, 1487, 1607, 1993, 2027, 2137, 2153, 2237, 2273, 2287, 2333, 2543, 2663, 2677, 2693, 2797, 2803, 2917, 3187, 3257, 3323, 3407, 3433, 3463, 3467, 3593, 3623, 3847
Offset: 1
Keywords
Examples
733 - 666 = 67, 733 + 666 = 1399 and 67, 733, 1399 are all prime, so 733 is a term of the sequence. - _Felix Fröhlich_, May 26 2022
Links
- Felix Fröhlich, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
lst={};b=666;Do[p=Prime[n];If[PrimeQ[p+b]&&PrimeQ[p-b],AppendTo[lst,p]],{n,5!+2,7!}];lst Select[Prime[Range[122,600]],AllTrue[#+{666,-666},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 08 2018 *)
-
PARI
forprime(p=1, 3900, if(ispseudoprime(p+666) && ispseudoprime(p-666), print1(p, ", "))) \\ Felix Fröhlich, May 26 2022
Extensions
Name edited by Felix Fröhlich, May 26 2022