cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143773 Number of partitions of n such that every part is divisible by number of parts.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 3, 1, 5, 1, 4, 3, 6, 1, 8, 1, 7, 5, 6, 1, 14, 2, 7, 8, 11, 1, 17, 1, 14, 11, 9, 3, 29, 1, 10, 15, 23, 1, 28, 1, 23, 25, 12, 1, 51, 2, 20, 25, 32, 1, 44, 11, 39, 31, 15, 1, 94, 1, 16, 40, 52, 19, 64, 1, 57, 45, 44, 1, 126, 1, 19, 83, 74, 6, 90, 1, 124, 63, 21, 1, 186
Offset: 1

Views

Author

Vladeta Jovovic, Aug 31 2008

Keywords

Examples

			The a(18) = 8 partitions are (18), (10 8), (12 6), (14 4), (16 2), (6 6 6), (9 6 3), (12 3 3). - _Gus Wiseman_, Jan 26 2018
		

Crossrefs

Programs

  • Mathematica
    m = 100;
    gf = Sum[x^(k^2)/Product[1-x^(k*i), {i, 1, k}], {k, 1, Sqrt[m]//Ceiling}];
    CoefficientList[gf + O[x]^m, x] // Rest (* Jean-François Alcover, May 13 2019 *)
  • PARI
    Vec(sum(k=1,20,x^(k^2)/prod(i=1,k,1-x^(k*i)+O(x^400)))) \\ Max Alekseyev, May 03 2009

Formula

G.f.: Sum(x^(k^2)/Product(1-x^(k*i), i=1..k), k=1..infinity).
For prime p, a(p) = 1 and a(p^2) = 2. For odd prime p, a(2*p) = (p + 1)/2. - Peter Bala, Mar 03 2025

Extensions

More terms from Max Alekseyev, May 03 2009