A143816 Let A(0) = 1, B(0) = 0 and C(0) = 0. Let B(n+1) = Sum_{k = 0..n} binomial(n,k)* A(k), C(n+1) = Sum_{k = 0..n} binomial(n,k)*B(k) and A(n+1) = Sum_{k = 0..n} binomial(n,k)*C(k). This entry gives the sequence B(n).
0, 1, 1, 1, 2, 11, 66, 352, 1730, 8233, 39987, 209793, 1240603, 8287281, 60473869, 463764484, 3647602117, 29165686541, 237499318823, 1984374301872, 17167462137733, 154885317758354, 1461156867801556, 14381004640256202, 146852743814531169, 1546054541191452967
Offset: 0
Examples
R(n) as a linear combination of R(0),R(1) and R(2) - R(1). ======================================= ..R(n)..|.....R(0).....R(1)...R(2)-R(1) ======================================= ..R(3)..|.......1........1........3.... ..R(4)..|.......6........2........7.... ..R(5)..|......25.......11.......16.... ..R(6)..|......91.......66.......46.... ..R(7)..|.....322......352......203.... ..R(8)..|....1232.....1730.....1178.... ..R(9)..|....5672.....8233.....7242.... ..R(10).|...32202....39987....43786....
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..576
- Eric Weisstein's World of Mathematics, Bell Polynomial.
Crossrefs
Programs
-
Maple
# (1) M:=24: a:=array(0..100): b:=array(0..100): c:=array(0..100): a[0]:=1: b[0]:=0: c[0]:=0: for n from 1 to M do b[n]:=add(binomial(n-1,k)*a[k], k=0..n-1); c[n]:=add(binomial(n-1,k)*b[k], k=0..n-1); a[n]:=add(binomial(n-1,k)*c[k], k=0..n-1); end do: A143816:=[seq(b[n], n=0..M)]; # (2) seq(add(Stirling2(n,3*i+1),i = 0..floor((n-1)/3)), n = 0..24); # third Maple program: b:= proc(n, t) option remember; `if`(n=0, irem(t, 2), add(b(n-j, irem(t+1, 3))*binomial(n-1, j-1), j=1..n)) end: a:= n-> b(n, 0): seq(a(n), n=0..25); # Alois P. Heinz, Feb 20 2018
-
Mathematica
m = 23; a[0] = 1; b[0] = 0; c[0] = 0; For[n = 1, n <= m, n++, b[n] = Sum[Binomial[n - 1, k]*a[k], {k, 0, n - 1}]; c[n] = Sum[Binomial[n - 1, k]*b[k], {k, 0, n - 1}]; a[n] = Sum[Binomial[n - 1, k]*c[k], {k, 0, n - 1}]]; A143816 = Table[ b[n], {n, 0, m}] (* Jean-François Alcover, Mar 06 2013, after Maple *)
-
PARI
Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!); a(n) = my(w=(-1+sqrt(3)*I)/2); round(Bell_poly(n, 1)+w^2*Bell_poly(n, w)+w*Bell_poly(n, w^2))/3; \\ Seiichi Manyama, Oct 13 2022
Formula
a(n) = Sum_{k = 0..floor((n-1)/3)} Stirling2(n,3k+1).
Let w = exp(2*Pi*i/3) and set F(x) = (exp(x) + w^2*exp(w*x) + w*exp(w^2*x))/3 = x + x^4/4! + x^7/7! + ... . Then the e.g.f. for the sequence is F(exp(x)-1). A143815(n) + A143816(n) + A143817(n) = Bell(n).
a(n) = ( Bell_n(1) + w^2 * Bell_n(w) + w * Bell_n(w^2) )/3, where Bell_n(x) is n-th Bell polynomial and w = exp(2*Pi*i/3). - Seiichi Manyama, Oct 13 2022
Extensions
Spelling/notation corrections by Charles R Greathouse IV, Mar 18 2010
Comments