cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143975 a(n) = floor(n*(n+3)/3).

Original entry on oeis.org

1, 3, 6, 9, 13, 18, 23, 29, 36, 43, 51, 60, 69, 79, 90, 101, 113, 126, 139, 153, 168, 183, 199, 216, 233, 251, 270, 289, 309, 330, 351, 373, 396, 419, 443, 468, 493, 519, 546, 573, 601, 630, 659, 689, 720, 751, 783, 816, 849, 883, 918, 953, 989, 1026, 1063, 1101
Offset: 1

Views

Author

Clark Kimberling, Sep 06 2008

Keywords

Comments

Fourth diagonal of A143974, associated with counting unit squares in a lattice.

Examples

			Main diagonal of A143974: (0,1,3,5,8,12,...) = A000212;
2nd diagonal: (0,2,4,6,10,14,18,...) = A128422;
3rd diagonal: (1,2,5,8,11,16,21,...) = A032765;
4th diagonal: (1,3,6,9,13,18,23,...) = A143975.
		

Crossrefs

Programs

  • Magma
    [Floor(n*(n+3)/3): n in [1..60]]; // Vincenzo Librandi, May 08 2011
  • Mathematica
    a[n_] := Floor[n*(n+3)/3]; Array[a, 60] (* Amiram Eldar, Oct 01 2022 *)

Formula

a(n) = floor(n*(n+3)/3).
From R. J. Mathar, Oct 05 2009: (Start)
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5).
G.f.: x*(-1 - x - x^2 + x^3)/( (1 + x + x^2) * (x-1)^3). (End)
9*a(n) = 3*n^2 + 9*n - 2 + A099837(n+3). - R. J. Mathar, Apr 26 2022
Sum_{n>=1} 1/a(n) = 4/3 + (tan((sqrt(13)+2)*Pi/6) - cot((sqrt(13)+1)*Pi/6)) * Pi/sqrt(13). - Amiram Eldar, Oct 01 2022
E.g.f.: (exp(x)*(3*x*(4 + x) - 2) + 2*exp(-x/2)*cos(sqrt(3)*x/2))/9. - Stefano Spezia, Oct 24 2022