A144003 E.g.f. A(x) satisfies: A(x) = 1 + Series_Reversion( Integral 1/A(x)^3 dx ).
1, 1, 3, 24, 339, 7101, 200961, 7256277, 321662502, 17029233774, 1054682936433, 75199620036177, 6094256204678922, 555527437385512095, 56468189426338157580, 6353824422205136494044, 786458781488123265873519
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 24*x^3/3! + 339*x^4/4! + 7101*x^5/5! + 200961*x^6/6! + 7256277*x^7/7! + 321662502*x^8/8! + ... where A(x) = 1 + Series_Reversion( Integral 1/A(x)^3 dx ). RELATED SERIES. Integral 1/A(x)^3 dx = x - 3*x^2/2! + 3*x^3/3! - 24*x^4/4! - 261*x^5/5! - 6543*x^6/6! - 202671*x^7/7! - 7911351*x^8/8! + ... where Integral 1/A(x)^3 dx = Series_Reversion(A(x) - 1). A(A(x) - 1) = 1 + x + 6*x^2/2! + 75*x^3/3! + 1479*x^4/4! + 40617*x^5/5! + 1447785*x^6/6! + 64027656*x^7/7! + 3404869020*x^8/8! + ... A(A(x) - 1)^3 = 1 + 3*x + 24*x^2/2! + 339*x^3/3! + 7101*x^4/4! + ... where A(A(x) - 1)^3 = d/dx A(x).
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..201
Programs
-
PARI
{a(n) = my(A=1+x+x*O(x^n)); for(i=0,n, A = 1 + serreverse(intformal(1/A^3))); n!*polcoeff(A,n)} for(n=0,20,print1(a(n),", "))
Formula
E.g.f. A(x) satisfies: A'(x) = A(A(x) - 1)^3. - Paul D. Hanna, Aug 26 2024
Comments