A014623
Sequence arising from analysis of Levine's sequence A011784: essentially a duplicate of A144005.
Original entry on oeis.org
1, 1, 2, 7, 33, 201, 1479, 12842, 127952
Offset: 0
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966.
A144006
Triangle, read by rows of coefficients of x^n*y^k for k=0..n(n-1)/2 for n>=0, defined by e.g.f.: A(x,y) = 1 + Series_Reversion( Integral A(-x*y,y) dx ), with leading zeros in each row suppressed.
Original entry on oeis.org
1, 1, 1, 3, -1, 15, -10, 3, -1, 105, -105, 55, -30, 10, -3, 1, 945, -1260, 910, -630, 350, -168, 76, -30, 10, -3, 1, 10395, -17325, 15750, -12880, 9135, -5789, 3381, -1806, 910, -434, 196, -76, 30, -10, 3, -1, 135135, -270270, 294525, -275275, 228375
Offset: 0
Triangle begins (without suppressing leading zeros):
1;
1;
0, 1;
0,0, 3, -1;
0,0,0, 15, -10, 3, -1;
0,0,0,0, 105, -105, 55, -30, 10, -3, 1;
0,0,0,0,0, 945, -1260, 910, -630, 350, -168, 76, -30, 10, -3, 1;
0,0,0,0,0,0, 10395, -17325, 15750, -12880, 9135, -5789, 3381, -1806, 910, -434, 196, -76, 30, -10, 3, -1;
0,0,0,0,0,0,0, 135135, -270270, 294525, -275275, 228375, -172200, 120960, -78519, 48006, -28336, 16065, -8609, 4461, -2166, 1018, -470, 196, -76, 30, -10, 3, -1; ...
-
{T(n,k)=local(A=1+x*O(x^n)); for(i=0,n,A=1+serreverse(intformal(subst(A,x,-x*y))));n!*polcoeff(polcoeff(A,n,x),k,y)}
-
#This is only correct if the observation in the comment from 2024/08/20 is true.
def T(n,k):
if 0 <= n <= 1:
return 1 if k == 0 else 0
c = {(-1,):1} #Polynomial in infinitely many variables (function iterates)
for _ in range(n-1):
cnext = {}
for key, value in c.items():
key += (0,)
for i, ni in enumerate(key):
term = tuple(nj-2 if j==i else nj-1 if j<=i+1 else nj
for j,nj in enumerate(key))
cnext[term] = cnext.get(term,0) + value*ni
if cnext[term] == 0:
del cnext[term]
c = cnext
pairs = {} #Reduction to single variable (evaluation at fixpoint)
for key, value in c.items():
s = -sum(key)
pairs[s] = pairs.get(s,0) + value
_, row = zip(*sorted(pairs.items())) #Coefficients
if 0 <= k-n+1 < len(row): #Correcting number of leading 0s
return (-1)**(n+k+1)*abs(row[k-n+1]) #Correcting signs
else:
return 0
# Lucas Larsen, Aug 22 2024
Showing 1-2 of 2 results.
Comments