cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A144007 Limit of unsigned reversed rows of triangle A144006.

Original entry on oeis.org

1, 3, 10, 30, 76, 196, 470, 1063, 2356, 5142, 10785, 22120, 44594, 88367, 172794, 332045, 628230, 1175169, 2173393, 3977199, 7209289, 12934491, 22987311, 40509706, 70823871, 122892290, 211765621, 362436448, 616131473, 1040782758
Offset: 0

Views

Author

Paul D. Hanna, Sep 10 2008

Keywords

Crossrefs

Cf. A144006.

A014621 Triangle of numbers arising from analysis of Levine's sequence A011784.

Original entry on oeis.org

1, 1, 3, 1, 15, 10, 3, 1, 105, 105, 55, 30, 10, 3, 1, 945, 1260, 910, 630, 350, 168, 76, 30, 10, 3, 1, 10395, 17325, 15750, 12880, 9135, 5789, 3381, 1806, 910, 434, 196, 76, 30, 10, 3, 1, 135135, 270270, 294525, 275275, 228375, 172200, 120960, 78519, 48006, 28336, 16065, 8609, 4461, 2166, 1018, 470, 196, 76, 30, 10, 3, 1
Offset: 1

Views

Author

Keywords

Examples

			Triangle begins:
    1;
    1;
    3,    1;
   15,   10,   3,   1;
  105,  105,  55,  30,  10,   3,  1;
  945, 1260, 910, 630, 350, 168, 76, 30, 10, 3, 1;
10395, 17325, 15750, 12880, 9135, 5789, 3381, 1806, 910, 434, 196, 76, 30,
  10, 3, 1;
135135, 270270, 294525, 275275, 228375, 172200, 120960, 78519, 48006, 28336, 16065, 8609, 4461, 2166, 1018, 470, 196, 76, 30, 10, 3, 1;
2027025, 4729725, 5990985, 6276270, 5853925, 4996530, 3999765, 2997225, 2115960, 1432725, 938644, 593646, 364551, 215940, 123639, 68886, 37276, 19485, 9959, 4911, 2301, 1063, 470, 196, 76, 30, 10, 3, 1;
		

Crossrefs

Cf. A011784, A014622 (row sums), A144006.

Programs

  • Python
    # See Miyamoto link.

Formula

From Roland Miyamoto, Nov 20 2022: (Start)
The n-th row contains 1 + (n-1)*(n-2)/2 numbers a(n,k), where n >= 1 and k = 0..(n-1)*(n-2)/2.
Let f be a solution to the iterative differential equation f(f(x))*f'(x) = -1 defined on some nonnegative interval and let tau=f(tau) be a fixed point of f. Then the n-th derivative of f at tau is
f^{(n)}(tau) = Sum_{k=0..(n-1)*(n-2)/2} (-1)^(n+k)*a(n,k)*tau^(2-3*n-k).
Thus, a(n,k) can be calculated recursively using the equations
0 = (f ° f * f')^{(n)} = Sum_{k=0..n} binomial(n,k) (f ° f)^{(n-k)}*f^{(k+1)} for n=1,2,... (End)

Extensions

More terms from Roland Miyamoto, Nov 20 2022
Offset corrected by Max Alekseyev, Sep 19 2023

A375720 Irregular triangle, read by rows: Coefficients of the polynomials P_n, n>=2 such that the series f(x) = c + c(x-c) + Sum_{n>=2} P_n(c)/c^((n-1)*(n+2)/2+1) (x-c)^n/n! satisfies f(c) = c and f'(f(x)) = x near the fixed point c in (0,oo).

Original entry on oeis.org

1, -1, 1, 3, -1, -3, -10, -15, 1, 3, 10, 30, 55, 105, 105, -1, -3, -10, -30, -76, -168, -350, -630, -910, -1260, -945, 1, 3, 10, 30, 76, 196, 434, 910, 1806, 3381, 5789, 9135, 12880, 15750, 17325, 10395, -1, -3, -10, -30, -76, -196, -470, -1018, -2166, -4461, -8609, -16065, -28336, -48006, -78519, -120960, -172200, -228375, -275275, -294525, -270270, -135135
Offset: 2

Views

Author

Lucas Larsen, Aug 26 2024

Keywords

Comments

The indices in each row range from 0 to (n-3)*(n-2)/2
When c = phi = (1+sqrt(5))/2 the series becomes the Taylor expansion of f(x) = phi^(-1/phi)*x^phi centered at phi, in particular the radius of convergence is positive for at least this choice of c.

Examples

			Triangle begins:
  1;
  -1;
  1, 3;
  -1, -3, -10, -15;
  1, 3, 10, 30, 55, 105, 105;
  -1, -3, -10, -30, -76, -168, -350, -630, -910, -1260, -945;
  ...
Polynomials are:
  P_2(c) = 1
  P_3(c) = -1
  P_4(c) = 1 + 3c
  P_5(c) = -1 - 3c - 10c^2 - 15c^3
  etc.
Hence the series begins
f(x) = c + c*(x-c) + c^(-1)(x-c)^2/2 - c^(-4)(x-c)^3/6 + (3c^(-7) + c^(-8))(x-c)^4/24 + ...
		

Crossrefs

Cf. A144006.

Programs

  • Python
    def T(n,k):
        c = {(-1,):1} #Polynomial in infinitely many variables (function iterates)
        for _ in range(n-2):
            cnext = {}
            for key, value in c.items():
                key += (0,)
                for i, ni in enumerate(key):
                    term = tuple(nj-2 if j==i else nj-1 if j<=i+1 else nj
                                 for j,nj in enumerate(key))
                    cnext[term] = cnext.get(term,0) + value*ni
                    if cnext[term] == 0:
                        del cnext[term]
            c = cnext
        pairs = {} #Reduction to single variable (evaluation at fixpoint)
        for key, value in c.items():
            s = sum(key)
            pairs[s] = pairs.get(s,0) + value
        return pairs.get(1+k-(n-1)*(n+2)//2,0)
Showing 1-3 of 3 results.