A144064 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is Euler transform of (j->k).
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 3, 0, 1, 4, 9, 10, 5, 0, 1, 5, 14, 22, 20, 7, 0, 1, 6, 20, 40, 51, 36, 11, 0, 1, 7, 27, 65, 105, 108, 65, 15, 0, 1, 8, 35, 98, 190, 252, 221, 110, 22, 0, 1, 9, 44, 140, 315, 506, 574, 429, 185, 30, 0, 1, 10, 54, 192, 490, 918, 1265, 1240, 810, 300, 42, 0
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 3, 4, 5, ... 0, 2, 5, 9, 14, 20, ... 0, 3, 10, 22, 40, 65, ... 0, 5, 20, 51, 105, 190, ... 0, 7, 36, 108, 252, 506, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
- G. E. Bergum and V. E. Hoggatt, Jr., Numerator polynomial coefficient array for the convolved Fibonacci sequence, Fib. Quart., 14 (1976), 43-44. (Annotated scanned copy)
- G. E. Bergum and V. E. Hoggatt, Jr., Numerator polynomial coefficient array for the convolved Fibonacci sequence, Fib. Quart., 14 (1976), 43-48. See Table 1.
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 8.
- N. J. A. Sloane, Transforms
- Index entries for expansions of Product_{k >= 1} (1-x^k)^m
Crossrefs
Columns k=0-24 give: A000007, A000041, A000712, A000716, A023003, A023004, A023005, A023006, A023007, A023008, A023009, A023010, A005758, A023011, A023012, A023013, A023014, A023015, A023016, A023017, A023018, A023019, A023020, A023021, A006922.
Main diagonal gives A008485.
Antidiagonal sums give A067687.
Programs
-
Julia
# DedekindEta is defined in A000594. A144064Column(k, len) = DedekindEta(len, -k) for n in 0:8 A144064Column(n, 6) |> println end # Peter Luschny, Mar 10 2018
-
Maple
with(numtheory): etr:= proc(p) local b; b:= proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: A:= (n,k)-> etr(j->k)(n): seq(seq(A(n, d-n), n=0..d), d=0..14);
-
Mathematica
a[0, ] = 1; a[, 0] = 0; a[n_, k_] := SeriesCoefficient[ Product[1/(1 - x^j)^k, {j, 1, n}], {x, 0, n}]; Table[a[n - k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 06 2013 *) etr[p_] := Module[{b}, b[n_] := b[n] = If[n==0, 1, Sum[Sum[d*p[d], {d, Divisors[j]} ]*b[n-j], {j, 1, n}]/n]; b]; A[n_, k_] := etr[k&][n]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Mar 30 2015, after Alois P. Heinz *)
-
PARI
Mat(apply( {A144064_col(k,nMax=9)=Col(1/eta('x+O('x^nMax))^k,nMax)}, [0..9])) \\ M. F. Hasler, Aug 04 2024
Formula
G.f. of column k: Product_{j>=1} 1/(1-x^j)^k.
A(n,k) = Sum_{i=0..k} binomial(k,i) * A060642(n,k-i):
Comments