A144089 T(n,k) is the number of partial bijections (or subpermutations) of an n-element set of height k (height(alpha) = |Im(alpha)|) and without fixed points.
1, 1, 0, 1, 2, 1, 1, 6, 9, 2, 1, 12, 42, 44, 9, 1, 20, 130, 320, 265, 44, 1, 30, 315, 1420, 2715, 1854, 265, 1, 42, 651, 4690, 16275, 25494, 14833, 1854, 1, 56, 1204, 12712, 70070, 198184, 263284, 133496, 14833, 1, 72, 2052, 29904, 240534, 1076544, 2573508
Offset: 0
Examples
T(3,2) = 9 because there are exactly 9 partial bijections (on a 3-element set) without fixed points and of height 2, namely: (1,2)->(2,1), (1,2)->(2,3), (1,2)->(3,1), (1,3)->(2,1), (1,3)->(3,1), (1,3)->(3,2), (2,3)->(1,2), (2,3)->(3,1), (2,3)->(3,2),- the mappings are coordinate-wise. Triangle starts: 1; 1, 0; 1, 2, 1; 1, 6, 9, 2; 1, 12, 42, 44, 9; 1, 20, 130, 320, 265, 44;
Links
- A. Laradji and A. Umar, Combinatorial results for the symmetric inverse semigroup, Semigroup Forum 75, (2007), 221-236.
- Eric Weisstein's World of Mathematics, Crown Graph
- Eric Weisstein's World of Mathematics, Matching-Generating Polynomial
Programs
-
Mathematica
t[n_, k_] := n!^2*Hypergeometric1F1[-k, -n, -1]/(k!*(n-k)!^2); Flatten[ Table[ t[n, k], {n, 0, 7}, {k, 0, n}]] (* Jean-François Alcover, Oct 13 2011 *) CoefficientList[Table[x^n n! Sum[(-1)^k/k! LaguerreL[n - k, -1/x], {k, 0, n}], {n, 2, 10}], x] // Flatten (* Eric W. Weisstein, May 19 2017 *)
-
Sage
def A144089_triangle(dim): # computes rows in reversed order M = matrix(ZZ,dim,dim) for n in (0..dim-1): M[n,n] = 1 for n in (1..dim-1): for k in (0..n-1): M[n,k] = M[n-1,k-1]+(2*k)*M[n-1,k]+(k+1)^2*M[n-1,k+1] return M A144089_triangle(9) # Peter Luschny, Sep 19 2012
Formula
T(n,k) = (n!/(n-k)!)*Sum_{m=0..k}(-1^m/m!)*binomial(n-m,k-m).
E.g.f.: exp(log(1/(1-y*x))-y*x)*exp(x/(1 - y*x)). - Geoffrey Critzer, Feb 18 2022
Comments