A144117 Number of Fibonacci parts in the last section of the set of partitions of n.
1, 2, 3, 5, 8, 13, 17, 28, 37, 55, 72, 104, 135, 187, 243, 327, 419, 557, 705, 922, 1163, 1494, 1871, 2383, 2960, 3730, 4611, 5754, 7073, 8766, 10710, 13180, 16036, 19600, 23736, 28859, 34788, 42075, 50529, 60811, 72747, 87184, 103907, 124019, 147330
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
b:= proc(n) option remember; false end: l:= [0, 1]: for k to 100 do b(l[1]):= true; l:= [l[2], l[1]+l[2]] od: aa:= proc(n, i) option remember; local g, h; if n=0 then [1, 0] elif i=0 or n<0 then [0, 0] else g:= aa(n, i-1); h:= aa(n-i, i); [g[1]+h[1], g[2]+h[2] +`if`(b(i), h[1], 0)] fi end: a:= n-> aa(n, n)[2] -aa(n-1, n-1)[2]: seq(a(n), n=1..60); # Alois P. Heinz, Jul 28 2009
-
Mathematica
Clear[b]; b[] = False; l = {0, 1}; For[k = 1, k <= 100, k++, b[l[[1]]] = True; l = {l[[2]], l[[1]] + l[[2]]}]; aa[n, i_] := aa[n, i] = Module[{g, h}, If[n == 0, {1, 0}, If[i == 0 || n < 0, {0, 0}, g = aa[n, i - 1]; h = aa[n - i, i]; {g[[1]] + h[[1]], g[[2]] + h[[2]] + If[b[i], h[[1]], 0]}]]] ; a[n_] := aa[n, n][[2]] - aa[n - 1, n - 1][[2]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Jul 30 2015, after Alois P. Heinz *)
Extensions
More terms from Alois P. Heinz, Jul 28 2009
Comments