cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144117 Number of Fibonacci parts in the last section of the set of partitions of n.

Original entry on oeis.org

1, 2, 3, 5, 8, 13, 17, 28, 37, 55, 72, 104, 135, 187, 243, 327, 419, 557, 705, 922, 1163, 1494, 1871, 2383, 2960, 3730, 4611, 5754, 7073, 8766, 10710, 13180, 16036, 19600, 23736, 28859, 34788, 42075, 50529, 60811, 72747, 87184, 103907, 124019, 147330
Offset: 1

Views

Author

Omar E. Pol, Sep 11 2008

Keywords

Comments

First differences of A144115.
Also number of Fibonacci parts in the n-th section of the set of partitions of any positive integer >= n. - Omar E. Pol, Jul 30 2015

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; false end: l:= [0, 1]: for k to 100 do b(l[1]):= true; l:= [l[2], l[1]+l[2]] od: aa:= proc(n, i) option remember; local g, h; if n=0 then [1, 0] elif i=0 or n<0 then [0, 0] else g:= aa(n, i-1); h:= aa(n-i, i); [g[1]+h[1], g[2]+h[2] +`if`(b(i), h[1], 0)] fi end: a:= n-> aa(n, n)[2] -aa(n-1, n-1)[2]: seq(a(n), n=1..60); # Alois P. Heinz, Jul 28 2009
  • Mathematica
    Clear[b]; b[] = False; l = {0, 1}; For[k = 1, k <= 100, k++, b[l[[1]]] = True; l = {l[[2]], l[[1]] + l[[2]]}]; aa[n, i_] := aa[n, i] = Module[{g, h}, If[n == 0, {1, 0}, If[i == 0 || n < 0, {0, 0}, g = aa[n, i - 1]; h = aa[n - i, i]; {g[[1]] + h[[1]], g[[2]] + h[[2]] + If[b[i], h[[1]], 0]}]]] ; a[n_] := aa[n, n][[2]] - aa[n - 1, n - 1][[2]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Jul 30 2015, after Alois P. Heinz *)

Formula

a(n) = A144115(n) - A144115(n-1).

Extensions

More terms from Alois P. Heinz, Jul 28 2009