cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A144115 Total number of Fibonacci parts in all partitions of n.

Original entry on oeis.org

1, 3, 6, 11, 19, 32, 49, 77, 114, 169, 241, 345, 480, 667, 910, 1237, 1656, 2213, 2918, 3840, 5003, 6497, 8368, 10751, 13711, 17441, 22052, 27806, 34879, 43645, 54355, 67535, 83571, 103171, 126907, 155766, 190554, 232629, 283158, 343969, 416716, 503900, 607807
Offset: 1

Views

Author

Omar E. Pol, Sep 11 2008

Keywords

Comments

a(n) is also the sum of the differences between the sum of f-th largest and the sum of (f+1)-st largest elements in all partitions of n for all Fibonacci parts f. - Omar E. Pol, Oct 27 2012

Examples

			From _Omar E. Pol_, Nov 20 2011 (Start):
For n = 6 we have:
--------------------------------------
.                        Number of
Partitions            Fibonacci parts
--------------------------------------
6 .......................... 0
3 + 3 ...................... 2
4 + 2 ...................... 1
2 + 2 + 2 .................. 3
5 + 1 ...................... 2
3 + 2 + 1 .................. 3
4 + 1 + 1 .................. 2
2 + 2 + 1 + 1 .............. 4
3 + 1 + 1 + 1 .............. 4
2 + 1 + 1 + 1 + 1 .......... 5
1 + 1 + 1 + 1 + 1 + 1 ...... 6
------------------------------------
Total ..................... 32
So a(6) = 32. (End)
		

Crossrefs

Programs

Formula

G.f.: Sum_{i>=2} x^Fibonacci(i)/(1 - x^Fibonacci(i)) / Product_{j>=1} (1 - x^j). - Ilya Gutkovskiy, Jan 24 2017

Extensions

More terms from Alois P. Heinz, Jun 24 2009

A144116 Number of non-Fibonacci parts in all partitions of n.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 5, 9, 14, 23, 34, 54, 76, 113, 158, 226, 309, 431, 580, 790, 1049, 1402, 1838, 2423, 3140, 4081, 5242, 6739, 8574, 10918, 13780, 17392, 21795, 27291, 33969, 42248, 52258, 64572, 79429, 97577, 119388, 145891, 177630, 215986, 261789
Offset: 1

Views

Author

Omar E. Pol, Sep 11 2008

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; true end: l:= [0, 1]: for k to 100 do b(l[1]):= false; l:= [l[2], l[1]+l[2]] od: aa:= proc(n, i) option remember; local g, h; if n=0 then [1, 0] elif i=0 or n<0 then [0, 0] else g:= aa(n, i-1); h:= aa(n-i, i); [g[1]+h[1], g[2]+h[2] +`if`(b(i), h[1], 0)] fi end: a:= n-> aa(n, n)[2]: seq(a(n), n=1..60); # Alois P. Heinz, Jul 28 2009
  • Mathematica
    Clear[b]; b[] = True; l = {0, 1}; For[k=1, k <= 100, k++, b[l[[1]]] = False; l = {l[[2]], l[[1]] + l[[2]]}]; aa[n, i_] := aa[n, i] = Module[{g, h}, If[n==0, {1, 0}, If[i==0 || n<0, {0, 0}, g = aa[n, i-1]; h = aa[n-i, i]; {g[[1]] + h[[1]], g[[2]] + h[[2]] + If[b[i], h[[1]], 0]}] ]]; a[n_] := aa[n, n][[2]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Jul 30 2015, after Alois P. Heinz *)

Formula

a(n) = A006128(n)-A144115(n).

Extensions

More terms from Alois P. Heinz, Jul 28 2009

A144118 Number of non-Fibonacci parts in the last section of the set of partitions of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 2, 4, 5, 9, 11, 20, 22, 37, 45, 68, 83, 122, 149, 210, 259, 353, 436, 585, 717, 941, 1161, 1497, 1835, 2344, 2862, 3612, 4403, 5496, 6678, 8279, 10010, 12314, 14857, 18148, 21811, 26503, 31739, 38356, 45803, 55066, 65553, 78488, 93129
Offset: 1

Views

Author

Omar E. Pol, Sep 11 2008

Keywords

Comments

First differences of A144116.

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; true end: l:= [0, 1]: for k to 100 do b(l[1]):= false; l:= [l[2], l[1]+l[2]] od: aa:= proc(n, i) option remember; local g, h; if n=0 then [1, 0] elif i=0 or n<0 then [0, 0] else g:= aa(n, i-1); h:= aa(n-i, i); [g[1]+h[1], g[2]+h[2] +`if`(b(i), h[1], 0)] fi end: a:= n-> aa(n, n)[2] -aa(n-1, n-1)[2]: seq(a(n), n=1..60); # Alois P. Heinz, Jul 28 2009
  • Mathematica
    Clear[b]; b[] = True; l = {0, 1}; For[k = 1, k <= 100, k++, b[l[[1]]] = False; l = {l[[2]], l[[1]] + l[[2]]}]; a[n, i_] := aa[n, i] = Module[{g, h}, If[n == 0, {1, 0}, If[i == 0 || n < 0, {0, 0}, g = aa[n, i-1]; h = aa[n-i, i]; {g[[1]] + h[[1]], g[[2]] + h[[2]] + If[b[i], h[[1]], 0]}]]]; a[n_] := aa[n, n][[2]] - aa[n-1, n-1][[2]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Dec 05 2016 after Alois P. Heinz *)

Formula

a(n) = A138137(n)-A144117(n) = A144116(n)-A144116(n-1).

Extensions

More terms from Alois P. Heinz, Jul 28 2009

A144121 Number of nonprime parts in the last section of the set of partitions of n.

Original entry on oeis.org

1, 1, 2, 4, 5, 9, 12, 20, 26, 39, 51, 76, 96, 136, 175, 241, 304, 412, 517, 686, 859, 1117, 1392, 1794, 2217, 2818, 3478, 4373, 5363, 6694, 8168, 10113, 12295, 15105, 18289, 22347, 26932, 32712, 39302, 47481, 56825, 68347
Offset: 1

Views

Author

Omar E. Pol, Sep 11 2008

Keywords

Comments

First differences of A144119.

Crossrefs

Formula

a(n) = A138137(n)-A144120(n) = A144119(n)-A144119(n-1).

A144120 Number of prime parts in the last section of the set of partitions of n.

Original entry on oeis.org

0, 1, 1, 2, 3, 6, 7, 12, 16, 25, 32, 48, 61, 88, 113, 154, 198, 267, 337, 446, 563, 730, 915, 1174, 1460, 1853, 2294, 2878, 3545, 4416, 5404, 6679, 8144, 9991, 12125, 14791, 17866, 21677, 26084, 31478, 37733, 45340
Offset: 1

Views

Author

Omar E. Pol, Sep 11 2008

Keywords

Comments

First differences of A037032.

Crossrefs

Formula

a(n) = A037032(n)-A037032(n-1).
Showing 1-5 of 5 results.