cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144215 Triangle read by rows: T(n,k) is the number of forests on n unlabeled nodes with all nodes of degree <= k (n>=1, 0 <= k <= n-1).

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 3, 5, 6, 1, 3, 7, 9, 10, 1, 4, 11, 17, 19, 20, 1, 4, 15, 28, 34, 36, 37, 1, 5, 22, 52, 67, 73, 75, 76, 1, 5, 30, 90, 129, 144, 150, 152, 153, 1, 6, 42, 170, 264, 305, 320, 326, 328, 329, 1, 6, 56, 310, 542, 645, 686, 701, 707, 709, 710
Offset: 1

Views

Author

N. J. A. Sloane, Dec 20 2008

Keywords

Examples

			Triangle begins:
  1
  1 2
  1 2  3
  1 3  5  6
  1 3  7  9 10
  1 4 11 17 19 20
  1 4 15 28 34 36 37
  ...
From _Andrew Howroyd_, Dec 18 2020: (Start)
Formatted as an array to show the full columns:
========================================================
n\k  | 0 1  2   3    4    5    6    7    8    9   10
-----+--------------------------------------------------
   1 | 1 1  1   1    1    1    1    1    1    1    1 ...
   2 | 1 2  2   2    2    2    2    2    2    2    2 ...
   3 | 1 2  3   3    3    3    3    3    3    3    3 ...
   4 | 1 3  5   6    6    6    6    6    6    6    6 ...
   5 | 1 3  7   9   10   10   10   10   10   10   10 ...
   6 | 1 4 11  17   19   20   20   20   20   20   20 ...
   7 | 1 4 15  28   34   36   37   37   37   37   37 ...
   8 | 1 5 22  52   67   73   75   76   76   76   76 ...
   9 | 1 5 30  90  129  144  150  152  153  153  153 ...
  10 | 1 6 42 170  264  305  320  326  328  329  329 ...
  11 | 1 6 56 310  542  645  686  701  707  709  710 ...
  12 | 1 7 77 600 1161 1431 1536 1577 1592 1598 1600 ...
(End)
		

Crossrefs

The final diagonal gives A005195.
Column k=2 is A000041.

Programs

  • PARI
    \\ Here V(n,k) gives column k of A144528.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    MSet(p,k)={my(n=serprec(p,x)-1); if(min(k,n)<1, 1 + O(x*x^n), polcoef(exp( sum(i=1, min(k,n), (y^i + O(y*y^k))*subst(p + O(x*x^(n\i)), x, x^i)/i ))/(1-y + O(y*y^k)), k, y))}
    V(n,k)={my(g=1+O(x)); for(n=2, n, g=x*MSet(g, k-1)); Vec(1 + x*MSet(g, k) + (subst(g, x, x^2) - g^2)/2)}
    M(n, m=n)={Mat(vector(m, k, EulerT(V(n,k-1)[2..1+n])~))}
    { my(T=M(12)); for(n=1, #T~, print(T[n, 1..n])) } \\ Andrew Howroyd, Dec 18 2020

Formula

Column k is Euler transform of column k of A144528. - Andrew Howroyd, Dec 18 2020

Extensions

Terms a(29) and beyond from Andrew Howroyd, Dec 18 2020