cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144289 Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows: Number T(n,k) of forests of labeled rooted trees on n or fewer nodes using a subset of labels 1..n and k edges.

Original entry on oeis.org

1, 2, 0, 4, 2, 0, 8, 12, 9, 0, 16, 48, 84, 64, 0, 32, 160, 480, 820, 625, 0, 64, 480, 2160, 6120, 10230, 7776, 0, 128, 1344, 8400, 34720, 94500, 155274, 117649, 0, 256, 3584, 29568, 165760, 647920, 1712592, 2776200, 2097152, 0, 512, 9216, 96768, 701568, 3669120, 13783392, 35630784, 57138120, 43046721, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 17 2008

Keywords

Examples

			T(3,1) = 12, because there are 12 forests of labeled rooted trees on 3 or fewer nodes using a subset of labels 1..3 and 1 edge:
  .1<2. .2<1. .1<3. .3<1. .2<3. .3<2. .1<2. .2<1. .1<3. .3<1. .2<3. .3<2.
  ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... .....
  ..... ..... ..... ..... ..... ..... .3... .3... .2... .2... .1... .1...
Triangle begins:
   1;
   2,   0;
   4,   2,   0;
   8,  12,   9,   0;
  16,  48,  84,  64,   0;
  32, 160, 480, 820, 625,  0;
		

Crossrefs

Columns 0, 1 give A000079, A001815.
First lower diagonal gives A000169 with first term 2.
Row sums give A088957.

Programs

  • Maple
    T:= proc(n,k) option remember;
          if k=0 then 2^n
        elif k<0 or n<=k then 0
        elif k=n-1 then n^(n-1)
        else add(binomial(n-1, j) *T(j+1, j) *T(n-1-j, k-j), j=0..k)
          fi
        end:
    seq(seq(T(n, k), k=0..n), n=0..11);
  • Mathematica
    T[n_, k_] := T[n, k] = Which[k == 0, 2^n, k<0 || n <= k, 0, k == n-1, n^(n-1), True, Sum[Binomial[n-1, j]*T[j+1, j]*T[n-1-j, k-j], {j, 0, k}]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 11}] // Flatten (* Jean-François Alcover, Jan 21 2014, translated from Alois P. Heinz's Maple code *)

Formula

T(n,0) = 2^n, T(n,k) = 0 if k < 0 or n <= k, otherwise T(n,k) = n^(n-1) if k=n-1, otherwise T(n,k) = Sum_{j=0..k} C(n-1,j)*T(j+1,j)*T(n-1-j,k-j).