cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A088957 Hyperbinomial transform of the sequence of 1's.

Original entry on oeis.org

1, 2, 6, 29, 212, 2117, 26830, 412015, 7433032, 154076201, 3608522954, 94238893883, 2715385121740, 85574061070045, 2928110179818478, 108110945014584623, 4284188833355367440, 181370804507130015569, 8169524599872649117330, 390114757072969964280163
Offset: 0

Views

Author

Paul D. Hanna, Oct 26 2003

Keywords

Comments

See A088956 for the definition of the hyperbinomial transform.
a(n) is the number of partial functions on {1,2,...,n} that are endofunctions with no cycles of length > 1. The triangle A088956 classifies these functions according to the number of undefined elements in the domain. The triangle A144289 classifies these functions according to the number of edges in their digraph representation (considering the empty function to have 1 edge). The triangle A203092 classifies these functions according to the number of connected components. - Geoffrey Critzer, Dec 29 2011
a(n) is the number of rooted subtrees (for a fixed root) in the complete graph on n+1 vertices: a(3) = 29 is the number of rooted subtrees in K_4: 1 of size 1, 3 of size 2, 9 of size 3, and 16 spanning subtrees. - Alex Chin, Jul 25 2013 [corrected by Marko Riedel, Mar 31 2019]
From Gus Wiseman, Jan 28 2024: (Start)
Also the number of labeled loop-graphs on n vertices such that it is possible to choose a different vertex from each edge in exactly one way. For example, the a(3) = 29 uniquely choosable loop-graphs (loops shown as singletons) are:
{} {1} {1,2} {1,12} {1,2,13} {1,12,13}
{2} {1,3} {1,13} {1,2,23} {1,12,23}
{3} {2,3} {2,12} {1,3,12} {1,13,23}
{2,23} {1,3,23} {2,12,13}
{3,13} {2,3,12} {2,12,23}
{3,23} {2,3,13} {2,13,23}
{1,2,3} {3,12,13}
{3,12,23}
{3,13,23}
(End)

Examples

			a(5) = 2117 = 1296 + 625 + 160 + 30 + 5 + 1 = sum of row 5 of triangle A088956.
		

Crossrefs

Cf. A088956 (triangle).
Row sums of A144289. - Alois P. Heinz, Jun 01 2009
Column k=1 of A144303. - Alois P. Heinz, Oct 30 2012
The covering case is A000272, also the case of exactly n edges.
Without the choice condition we have A006125 (shifted left).
The unlabeled version is A087803.
The choosable version is A368927, covering A369140, loopless A133686.
The non-choosable version is A369141, covering A369142, loopless A367867.

Programs

  • Haskell
    a088957 = sum . a088956_row  -- Reinhard Zumkeller, Jul 07 2013
    
  • Maple
    a:= n-> add((n-j+1)^(n-j-1)*binomial(n,j), j=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Oct 30 2012
  • Mathematica
    nn = 16; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}];
    Range[0, nn]! CoefficientList[Series[Exp[x] Exp[t], {x, 0, nn}], x]  (* Geoffrey Critzer, Dec 29 2011 *)
    With[{nmax = 50}, CoefficientList[Series[-LambertW[-x]*Exp[x]/x, {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Nov 14 2017 *)
  • PARI
    x='x+O('x^10); Vec(serlaplace(-lambertw(-x)*exp(x)/x)) \\ G. C. Greubel, Nov 14 2017

Formula

a(n) = Sum_{k=0..n} (n-k+1)^(n-k-1)*C(n, k).
E.g.f.: A(x) = exp(x+sum(n>=1, n^(n-1)*x^n/n!)).
E.g.f.: -LambertW(-x)*exp(x)/x. - Vladeta Jovovic, Oct 27 2003
a(n) ~ exp(1+exp(-1))*n^(n-1). - Vaclav Kotesovec, Jul 08 2013
Binomial transform of A000272. - Gus Wiseman, Jan 25 2024

A203092 Triangular array read by rows. T(n,k) is the number of partial functions on {1,2,...,n} that are endofunctions with no cycles of length > 1 that have exactly k components.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 18, 9, 1, 1, 116, 78, 16, 1, 1, 1060, 810, 220, 25, 1, 1, 12702, 10335, 3260, 495, 36, 1, 1, 187810, 158613, 54740, 9835, 966, 49, 1, 1, 3296120, 2854908, 1046024, 209510, 24696, 1708, 64, 1
Offset: 0

Views

Author

Geoffrey Critzer, Dec 29 2011

Keywords

Comments

Row sums = A088957.
T(n,0)= 1, the empty function.
T(n,n)= 1, the identity function.
T(n,n-1)= n^2 (apparently).

Examples

			T(2,1)= 4 because there are 4 such partial functions on {1,2}: 1->1, 2->2, 1->1 2->1, 1->2 2->2,
1
1     1
1     4     1
1     18    9     1
1     116   78    16    1
1     1060  810   220   25    1
1     12702 10335 3260  495   36    1
		

Crossrefs

Programs

  • Mathematica
    nn = 8; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}];
    f[list_] := Select[list, # > 0 &];
    Map[f, Range[0, nn]! CoefficientList[ Series[Exp[x] Exp[y t], {x, 0, nn}], {x, y}]] // Flatten

Formula

E.g.f.: exp(x)*exp(y T(x)) where T(x) is the e.g.f. for A000169.
Showing 1-2 of 2 results.