cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144366 Shifts 2 places left under Dirichlet convolution.

Original entry on oeis.org

1, 1, 1, 2, 2, 5, 4, 12, 8, 28, 17, 60, 34, 134, 68, 276, 140, 580, 280, 1186, 560, 2436, 1128, 4906, 2256, 9976, 4516, 20020, 9048, 40324, 18096, 80860, 36192, 162320, 72418, 324920, 144852, 651177, 289704, 1302914, 579476, 2608360, 1158952
Offset: 1

Views

Author

Alois P. Heinz, Sep 18 2008

Keywords

Comments

Appears to be essentially the same as a sequence in Section 2.2 of Baril-Ramirez. - N. J. A. Sloane, Feb 18 2024

Crossrefs

2nd column of A144374. Cf. A000005.

Programs

  • Maple
    k:= 2: with(numtheory): dck:= proc(b,c) proc(n, k) option remember; add(b(d,k) *c(n/d,k), d=`if`(n<0,{}, divisors(n))) end end: B:= dck(T,T): T:= (n, k)-> if n<=k then 1 else B(n-k, k) fi: a:= n-> T(n,k): seq(a(n), n=1..50);
  • Mathematica
    k = 2; dck[b_, c_][n_, k_] := dck[b, c][n, k] = DivisorSum[n, b[#, k] * c[n/#, k]&]; B = dck[T, T]; T[n_, k_] :=  If[n <= k, 1, B[n-k, k]]; a[n_] := T[n, k]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Apr 05 2017, translated from Maple *)

Formula

G.f.: x + x^2 * (1 + Sum_{i>=1} Sum_{j>=1} a(i)*a(j)*x^(i*j)). - Ilya Gutkovskiy, May 09 2019