A144387 Triangle read by rows: row n gives the coefficients in the expansion of Sum_{j=0..n} A000040(j+1)*x^j*(1 - x)^(n - j).
2, 2, 1, 2, -1, 4, 2, -3, 5, 3, 2, -5, 8, -2, 8, 2, -7, 13, -10, 10, 5, 2, -9, 20, -23, 20, -5, 12, 2, -11, 29, -43, 43, -25, 17, 7, 2, -13, 40, -72, 86, -68, 42, -10, 16, 2, -15, 53, -112, 158, -154, 110, -52, 26, 13, 2, -17, 68, -165, 270, -312, 264, -162, 78, -13, 18
Offset: 0
Examples
Triangle begins 2; 2, 1; 2, -1, 4; 2, -3, 5, 3; 2, -5, 8, -2, 8; 2, -7, 13, -10, 10, 5; 2, -9, 20, -23, 20, -5, 12; 2, -11, 29, -43, 43, -25, 17, 7; 2, -13, 40, -72, 86, -68, 42, -10, 16; 2, -15, 53, -112, 158, -154, 110, -52, 26, 13; 2, -17, 68, -165, 270, -312, 264, -162, 78, -13, 18; ...
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Mathematica
p[x_, n_] = Sum[Prime[k + 1]*x^k*(1 - x)^(n - k), {k, 0, n}]; Table[CoefficientList[p[x, n], x], {n, 0, 10}]//Flatten
-
Sage
def p(n,x): return sum( nth_prime(j+1)*x^j*(1-x)^(n-j) for j in (0..n) ) def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False) [T(n) for n in (0..12)] # G. C. Greubel, Jul 15 2021
Extensions
Edited, new name, and offset corrected by Franck Maminirina Ramaharo, Oct 19 2018
Comments