cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A144394 Triangle read by rows (n >= 4, 0 <= k <= n - 4): row n gives the coefficients in the expansion of ((x + 1)^n - (x^n + n*x^(n - 1) + n*x + 1))/x^2.

Original entry on oeis.org

6, 10, 10, 15, 20, 15, 21, 35, 35, 21, 28, 56, 70, 56, 28, 36, 84, 126, 126, 84, 36, 45, 120, 210, 252, 210, 120, 45, 55, 165, 330, 462, 462, 330, 165, 55, 66, 220, 495, 792, 924, 792, 495, 220, 66, 78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78, 91, 364, 1001, 2002, 3003, 3432, 3003, 2002, 1001, 364, 91
Offset: 4

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 02 2008

Keywords

Comments

Interior of Pascal's triangle, stripping out the initial 1, n and final n, 1 in each row.

Examples

			Triangle begins:
    6;
   10,  10;
   15,  20,   15;
   21,  35,   35,   21;
   28,  56,   70,   56,   28;
   36,  84,  126,  126,   84,   36;
   45, 120,  210,  252,  210,  120,   45;
   55, 165,  330,  462,  462,  330,  165,   55;
   66, 220,  495,  792,  924,  792,  495,  220,   66;
   78, 286,  715, 1287, 1716, 1716, 1287,  715,  286,   78;
   91, 364, 1001, 2002, 3003, 3432, 3003, 2002, 1001,  364,  91;
  105, 455, 1365, 3003, 5005, 6435, 6435, 5005, 3003, 1365, 455, 105;
  ...
		

Crossrefs

Cf. A007318, A052515 (row sums), A024746 (sorted), A144393.

Programs

  • Haskell
    a144394 n k = a144394_tabl !! (n-4) !! k
    a144394_row n = a144394_tabl !! (n-4)
    a144394_tabl = map (drop 2 . reverse . drop 2) $ drop 4 a007318_tabl
    -- Reinhard Zumkeller, Dec 24 2012
    
  • Mathematica
    p[x_, n_] = ((x + 1)^n - (x^n + n*x^(n - 1) + n*x + 1))/x^2
    Table[CoefficientList[p[x, n], x], {n, 4, 15}] // Flatten
  • Maxima
    create_list(binomial(n, k + 2), n, 4, 20, k, 0, n - 4); /* Franck Maminirina Ramaharo, Jan 25 2019 */

Formula

T(n,k) = binomial(n, k + 2), n >= 4, 0 <= k <= n - 4.
Sum_{n >= 4, 0 <= k <= n-4} 1/T(n,k) = 3/2. - Hermann Stamm-Wilbrandt, Jul 21 2014

Extensions

Edited by Franklin T. Adams-Watters, Apr 07 2010
Showing 1-1 of 1 results.