A144398 Coefficients of a symmetrical polynomial set:( Pascal's triangle with central zeros) p(x,n)=If[n <= 4, Sum[Binomial[n, i]*x^i, {i, 0, n}], x^n + n*x^(n - 1) + Binomial[n, 2]*x^(n - 2) + n*x + Binomial[n, 2]*x^2 + 1].
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 0, 15, 6, 1, 1, 7, 21, 0, 0, 21, 7, 1, 1, 8, 28, 0, 0, 0, 28, 8, 1, 1, 9, 36, 0, 0, 0, 0, 36, 9, 1, 1, 10, 45, 0, 0, 0, 0, 0, 45, 10, 1
Offset: 1
Examples
{1}, {1, 1}, {1, 2, 1}, {1, 3, 3, 1}, {1, 4, 6, 4, 1}, {1, 5, 10, 10, 5, 1}, {1, 6, 15, 0, 15, 6, 1}, {1, 7, 21, 0, 0, 21, 7, 1}, {1, 8, 28, 0, 0, 0, 28, 8, 1}, {1, 9, 36, 0, 0, 0, 0, 36, 9, 1}, {1, 10, 45, 0, 0, 0, 0, 0, 45, 10, 1}
Programs
-
Mathematica
Clear[p, n]; p[x_, n_] = If[n <= 4, Sum[Binomial[n, i]*x^i, {i, 0, n}], x^n + n*x^(n - 1) + Binomial[n, 2]*x^(n - 2) + n*x + Binomial[n, 2]*x^2 + 1]; Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[%]
Formula
p(x,n)=If[n <= 4, Sum[Binomial[n, i]*x^i, {i, 0, n}], x^n + n*x^(n - 1) + Binomial[n, 2]*x^(n - 2) + n*x + Binomial[n, 2]*x^2 + 1]; t(n,m)=coefficients(p(x,n)).
Comments