A144400 Triangle read by rows: row n (n > 0) gives the coefficients of x^k (0 <= k <= n - 1) in the expansion of Sum_{j=0..n} A000931(j+4)*binomial(n, j)*x^(j - 1)*(1 - x)^(n - j).
1, 2, -1, 3, -3, 1, 4, -6, 4, 0, 5, -10, 10, 0, -3, 6, -15, 20, 0, -18, 10, 7, -21, 35, 0, -63, 70, -24, 8, -28, 56, 0, -168, 280, -192, 49, 9, -36, 84, 0, -378, 840, -864, 441, -89, 10, -45, 120, 0, -756, 2100, -2880, 2205, -890, 145, 11, -55, 165, 0
Offset: 1
Examples
Triangle begins: 1; 2, -1; 3, -3, 1; 4, -6, 4, 0; 5, -10, 10, 0, -3; 6, -15, 20, 0, -18, 10; 7, -21, 35, 0, -63, 70, -24; 8, -28, 56, 0, -168, 280, -192, 49; 9, -36, 84, 0, -378, 840, -864, 441, -89; 10, -45, 120, 0, -756, 2100, -2880, 2205, -890, 145; ... reformatted. - _Franck Maminirina Ramaharo_, Oct 22 2018
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Crossrefs
Programs
-
Mathematica
a[n_]:= a[n]= If[n<3, Fibonacci[n], a[n-2] + a[n-3]]; p[x_, n_]:= Sum[a[k]*Binomial[n, k]*x^(k-1)*(1-x)^(n-k), {k, 0, n}]; Table[Coefficient[p[x, n], x, k], {n, 12}, {k, 0, n-1}]//Flatten
-
Sage
@CachedFunction def f(n): return fibonacci(n) if (n<3) else f(n-2) + f(n-3) def p(n,x): return sum( binomial(n,j)*f(j)*x^(j-1)*(1-x)^(n-j) for j in (0..n) ) def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False) [T(n) for n in (1..12)] # G. C. Greubel, Jul 14 2021
Formula
G.f.: (y - (1 - 2*x)*y^2)/(1 - 3*(1 - x)*y + (3 - 6*x + 2*x^2)*y^2 - (1 - 3*x + 2*x^2 + x^3)*y^3). - Franck Maminirina Ramaharo, Oct 22 2018
Extensions
Edited, and new name by Franck Maminirina Ramaharo, Oct 22 2018